首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59597篇
  免费   17826篇
  国内免费   42548篇
测绘学   3174篇
大气科学   23495篇
地球物理   17729篇
地质学   42769篇
海洋学   17864篇
天文学   7345篇
综合类   4011篇
自然地理   3584篇
  2022年   339篇
  2021年   666篇
  2020年   1945篇
  2019年   5404篇
  2018年   5902篇
  2017年   5629篇
  2016年   5865篇
  2015年   5011篇
  2014年   4671篇
  2013年   5942篇
  2012年   5010篇
  2011年   5057篇
  2010年   4872篇
  2009年   4575篇
  2008年   3709篇
  2007年   3617篇
  2006年   3366篇
  2005年   3113篇
  2004年   3466篇
  2003年   3231篇
  2002年   2947篇
  2001年   2604篇
  2000年   2287篇
  1999年   2176篇
  1998年   2257篇
  1997年   2362篇
  1996年   1886篇
  1995年   1802篇
  1994年   1629篇
  1993年   1538篇
  1992年   1358篇
  1991年   1111篇
  1990年   1089篇
  1989年   954篇
  1988年   849篇
  1987年   841篇
  1986年   736篇
  1985年   702篇
  1984年   823篇
  1983年   717篇
  1982年   692篇
  1981年   627篇
  1980年   546篇
  1979年   537篇
  1978年   487篇
  1977年   435篇
  1976年   384篇
  1975年   364篇
  1974年   424篇
  1973年   406篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
用快中子活化法测定了安徽凤阳和张八岭地区朱顶、毛山和上成3个金矿床第一阶段晚期和第二阶段的含金石英脉,石英的阶段加热40Ar/39Ar坪年龄值域为(116.1±0.6~118.3±0.5)Ma,分别与其最小视年龄和等时线年龄接近.坪年龄、最小视年龄和等时线年龄3种年龄值域为(113.4±0.4~118.3±0.5)Ma,可以作为石英的形成年龄域. 根据含金石英脉和围岩的空间关系,该年龄值域作为石英脉金矿的形成年龄是合理可靠的.金矿床形成于早白垩世阿普特期,与此时郯庐断裂带略带右行走滑正断层活动一致.  相似文献   
992.
将广义Kопытов预测模型和乙型水驱曲线方法有机的结合起来,得到了油田开发中后期——递减时期的一种预测水驱开发油田的含水率、产油量、产水量及其相应的累积产量随开发时间变化的方法,此方法克服了在水驱油田预测开发指标中二者所存在的局限性。  相似文献   
993.
Kerman city has a semiarid-arid climate with an average annual precipitation of about 158 mm. The area is underlain by soluble subsoil and alluvial deposits, overlying highly fractured Cretaceous limestones. Geo-environmental studies indicate that both paleokarst and active karst features are developed in the area. The paleokarsts were developed in the Upper Cretaceous limestone during the cold, humid periods of Post Cretaceous and probably Early Quaternary time and include honeycombs, solution flutes, rillenkarren, caverns, and solution collapse dolines. Active karst landforms occur by combined piping-induced and limestone solution at depth in subsoils, and alluvial deposits and bajada that overly potent karstic limestones and cover subsidence sinkholes and subjacent alluvial karst collapse dolines. Many factors, such as soluble compounds (salt and gypsum), desiccation cracks, and Qanat (dug water wells), could contribute to the development of karstic landforms. The most immediate cause for active karst landforms is considered to be the drawdown of the water table in the area. There is an increasing demand for groundwater consumption to irrigate pistachio fields. Excessive pumping of the groundwater lowers the water table about 80 cm per year. This rate of drawdown accelerates land subsidence (about 6 cm per year), creates circular patterns of fractures in the ground and in buildings, disrupts agricultural work and urbanization projects, and tilts foundations. These geohazards indicate that ground sinking and karstification are in progress in the alluvial deposits and underlying limestones. The disturbance and expense caused by the geohazards could be mitigated by the application of overhead sprinkler irrigation for pistachio fields or by planting less thirsty plants.  相似文献   
994.
995.
996.
Abstract Analogue flume experiments were conducted to investigate the transport and sedimentation behaviour of turbulent pyroclastic density currents. The experimental currents were scaled approximately to the natural environment in three ways: (1) they were fully turbulent; (2) they had a very wide range of particle sizes and associated Rouse numbers (the ratio of particle settling velocity to effective turbulent eddy velocity in the current); and (3) they contained particles of two different densities. Two sets of surge‐type experiments were conducted in a 5 m long, water‐filled lock‐exchange flume at five different volumetric particle concentrations from 0·6% to 23%. In one set (one‐component experiments), the currents contained just dense particles; in the other set (two‐component experiments), they contained both light and dense particles in equal volume proportions. In both sets of experiments, the population of each component had a log‐normal size distribution. In the two‐component experiments, the size range of the light particle population was selected in order to be in hydrodynamic equivalence with that of the dense particles. Dense particles were normally graded, both vertically and downstream, in the deposits from both sets of experiments. The mass loading (normalized to the initial mass of the suspension) and grain size of the dense component in the deposits decreased with distance from the reservoir and were insensitive to initial total particle concentration in the currents. On the other hand, in the two‐component experiments, the light particles were extremely sensitive to concentration. They were deposited in hydrodynamic equivalence with the dense particles from dilute currents, but were segregated efficiently at concentrations higher than a few per cent. With increasing particle concentration, the large, light particles were carried progressively further down the flume because of buoyancy effects. Deposits from the high‐concentration currents exhibited reverse vertical grading of the large, light particles. Efficient segregation of the light component was observed even if the bulk density of the current was less than that of the light particles. In both sets of experiments, marked inflexions in the rate of downstream decline in mass loading and maximum grain size of the dense component can be attributed to the presence of two different particle settling regimes in the flow: (1) particles with Rouse numbers >2·5, which did not respond to the turbulence and settled rapidly; and (2) particles with Rouse numbers <2·5, which followed the turbulent eddies and settled slowly. The results are applied to the transport and sedimentation dynamics of pyroclastic density currents that generate large, widespread ignimbrites. Field data fail to reveal significant departures from aerodynamic equivalence between pumice and lithic clasts in three such ignimbrites: the particulate loads of some large ignimbrites are transported principally in turbulent suspensions of low concentration. In some ignimbrites, the well‐developed inflexions in curves of maximum lithic (ML) size vs. distance can be attributed to the existence of distinct high and low Rouse number particle settling regimes that mark the transition from an overcharged state to one in which the residual particulate load is transported more effectively by turbulence.  相似文献   
997.
High‐T, low‐P metamorphic rocks of the Palaeoproterozoic central Halls Creek Orogen in northern Australia are characterised by low radiogenic heat production, high upper crustal thermal gradients (locally exceeding 40 °C km?1) sustained for over 30 Myr, and a large number of layered mafic‐ultramafic intrusions with mantle‐related geochemical signatures. In order to account for this combination of geological and thermal characteristics, we model the middle crustal response to a transient mantle‐related heat pulse resulting from a temporary reduction in the thickness of the mantle lithosphere. This mechanism has the potential to raise mid‐crustal temperatures by 150–400 °C within 10–20 Myr following initiation of the mantle temperature anomaly, via conductive dissipation through the crust. The magnitude and timing of maximum temperatures attained depend strongly on the proximity, duration and lateral extent of the thermal anomaly in the mantle lithosphere, and decrease sharply in response to anomalies that are seated deeper than 50–60 km, maintained for <5 Myr in duration and/or have half‐widths <100 km. Maximum temperatures are also intimately linked to the thermal properties of the model crust, primarily due to their influence on the steady‐state (background) thermal gradient. The amplitudes of temperature increases in the crust are principally a function of depth, and are broadly independent of crustal thermal parameters. Mid‐crustal felsic and mafic plutonism is a predictable consequence of perturbed thermal regimes in the mantle and the lowermost crust, and the advection of voluminous magmas has the potential to raise temperatures in the middle crust very quickly. Although pluton‐related thermal signatures significantly dissipate within <10 Myr (even for very large, high‐temperature intrusive bodies), the interaction of pluton‐ and mantle‐related thermal effects has the potential to maintain host rock temperatures in excess of 400–450 °C for up to 30 Myr in some parts of the mid‐crust. The numerical models presented here support the notion that transient mantle‐related heat sources have the capacity to contribute significantly to the thermal budget of metamorphism in high‐T, low‐P metamorphic belts, especially in those characterised by low surface heat flow, very high peak metamorphic geothermal gradients and abundant mafic intrusions.  相似文献   
998.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   
999.
Apatite fission track analysis was performed on 56 samples from central Spain to unravel the far field effects of the Alpine plate tectonic history of Iberia. The modelled thermal histories reveal complex cooling in the Cenozoic, indicative of intermittent denudation. Accelerated cooling events occurred across the Spanish Central System (SCS) from the Middle Eocene to Recent. These accelerated cooling events resulted in up to 2.8±0.9 km of denudation in the western Sierra de Gredos and 3.6±1.0 km in the central and eastern Gredos (assuming a paleogeothermal gradient of 28±5 °C and a surface temperature of 10 °C). The greatest amount of denudation (5.0±1.6 km) occurred in the Sierra de Guadarrama. Accompanying rock uplift was 4.7±1.0 and 5.9±1.6 km in the eastern Gredos and Guadarrama, respectively. Most denudation in the Gredos occurred from the Middle Eocene to the Early Miocene and can be related to the N–S stress field, induced by the Pyrenean compression. In the Guadarrama, the greatest denudation was Pliocene to Recent of age and seems related to the ongoing NW–SE Betic compression. The fact that the formation of the E–W trending Gredos coincides with the N–S Pyrenean compression and the creation of the present day morphology of the NE–SW trending Guadarrama with the younger NW–SE Betic compression, indicates that they record the far field effects of Alpine plate tectonics on Iberia. The trend of pre-existing lineaments was of major importance in influencing the style and magnitude of these of far field effects.  相似文献   
1000.
A finite element formulation is proposed to approximate a nonlinear system of partial differential equations, composed by an elliptic subsystem for the pressure–velocity and a transport equation (convection–diffusion) for the concentration, which models the incompressible miscible displacement of one fluid by another in a rigid porous media. The pressure is approximated by the classical Galerkin method and the velocity is calculated by a post-processing technique. Then, the concentration is obtained by a Galerkin/least-squares space–time (GLS/ST) finite element method. A numerical analysis is developed for the concentration approximation. Then, stability, convergence and numerical results are presented confirming the a priori error estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号