首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   21篇
  国内免费   2篇
测绘学   11篇
大气科学   23篇
地球物理   91篇
地质学   128篇
海洋学   25篇
天文学   70篇
综合类   3篇
自然地理   53篇
  2021年   3篇
  2020年   7篇
  2019年   11篇
  2018年   11篇
  2017年   2篇
  2016年   14篇
  2015年   10篇
  2014年   9篇
  2013年   19篇
  2012年   7篇
  2011年   23篇
  2010年   19篇
  2009年   21篇
  2008年   20篇
  2007年   15篇
  2006年   23篇
  2005年   10篇
  2004年   12篇
  2003年   18篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   9篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有404条查询结果,搜索用时 15 毫秒
61.
Dissolution experiments of a tholeiite basalt glass carried out at different pH and T (up to 300°C) using a rotatingdisc apparatus show that, depending on pH and T, dissolution can be controlled by one of the following steps: (1) surface reaction; (2) transport of reactants in solution; and (3) mixed reaction. The activation energies of these different processes were found to be 60, 9 and 15–50 kJ mol−1, respectively. Taking account of these results, it appears likely that surface reactions are not rate limiting for the hydrolysis of most crystalline silicate minerals in hydrothermal and metamorphic processes, and that caution should be exercised when predicting rate of reactions at high temperatures solely on the basis of activation energies measured at low temperatures.

Comparison of experimental and theoretical potentiometric titrations of the basalt glass and its constituent oxides indicates that the adsorption of H+ and OH ions at the basalt surface is metal cation specific and that the net adsorption can be predicted from the sole knowledge of the acidity constants of the network-forming constituent oxides. We found that in the acidic pH region dissolution is promoted by the adsorption of H+ on al and Fe surface sites while in the basic region, dissolution is promoted by the adsorption of OH on Si sites. The combination of the two distinct types of surface sites, Al and Fe on the one hand, and Si on the other hand, results in a dissolution rate minimum at a pH-value between the pHzpc of the two groups of oxide components. Linear regressions with a slope n=3.8 are observed both in acid and alkaline solutions in logarithmic plots of the rate of dissolution vs. the surface charge. The value of n, which represents the number of protonation or hydroxylation steps prior to metal detachment, has been found equal to the mean valence of the network-forming metals.

Combining concepts of surface coordination chemistry with transition state theory afforded characterisation of the activated complexes involved in basalt dissolution processes. From the values obtained for the thermodynamic properties of activation for basalt dissolution it is assumed that the activated complexes formed during the H2O-promoted dissolution of the basalt glass are more tightly bonded than those formed during H+- or OH-promoted dissolution.  相似文献   

62.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   
63.
In the Makran subduction zone, earthquake focal mechanisms and geodetic data indicate that the deforming prism currently experiences N–S compression. However, palaeostress inversions performed on normal faults observed along the coast reveal local stress components consistent with N‐S extension. Previously proposed mechanisms such as gravitational collapse are not favoured by N–S compression and surface uplift. We propose that the observed kinematics result from transient stress reversals following large earthquakes. During the interseismic period (now), the region experiences N–S compression. However, following a large reverse rupture on the subduction interface, stresses in the inner wedge relax, enabling a brief period of extensional faulting before a compressive stress state is re‐established. This mechanism, also observed in other subduction zones, requires low overall stresses in the upper plate and that the margin ruptures in large megathrust earthquakes that result in nearly complete stress drops.  相似文献   
64.
The Bonneville Basin is a continental lacustrine system accommodating extensive microbial carbonate deposits corresponding to two distinct phases: the deep Lake Bonneville (30 000 to 11 500 14C bp ) and the shallow Great Salt Lake (since 11 500 14C bp ). A characterization of these microbial deposits and their associated sediments provides insights into their spatio‐temporal distribution patterns. The Bonneville phase preferentially displays vertical distribution of the microbial deposits resulting from high‐amplitude lake level variations. Due to the basin physiography, the microbial deposits were restricted to a narrow shoreline belt following Bonneville lake level variations. Carbonate production was more efficient during intervals of relative lake level stability as recorded by the formation of successive terraces. In contrast, the Great Salt Lake microbial deposits showed a great lateral distribution, linked to the modern flat bottom configuration. A low vertical distribution of the microbial deposits was the result of the shallow water depth combined with a low amplitude of lake level fluctuations. These younger microbial deposits display a higher diversity of fabrics and sizes. They are distributed along an extensive ‘shore to lake’ transect on a flat platform in relation to local and progressive accommodation space changes. Microbial deposits are temporally discontinuous throughout the lake history showing longer hiatuses during the Bonneville phase. The main parameters controlling the rate of carbonate production are related to the interaction between physical (kinetics of the mineral precipitation, lake water temperature and runoff), chemical (Ca2+, Mg2+ and HCO3? concentrations, Mg/Ca ratio, dilution and depletion) and/or biological (trophic) factors. The contrast in evolution of Lake Bonneville and Great Salt Lake microbial deposits during their lacustrine history leads to discussions on major chemical and climatic changes during this interval as well as the role of physiography. Furthermore, it provides novel insights into the composition, structure and formation of microbialite‐rich carbonate deposits under freshwater and hypersaline conditions.  相似文献   
65.
A. Guy Plint 《Sedimentology》2014,61(3):609-647
Determining sediment transport direction in ancient mudrocks is difficult. In order to determine both process and direction of mud transport, a portion of a well‐mapped Cretaceous delta system was studied. Oriented samples from outcrop represent prodelta environments from ca 10 to 120 km offshore. Oriented thin sections of mudstone, cut in three planes, allowed bed microstructure and palaeoflow directions to be determined. Clay mineral platelets are packaged in equant, face‐face aggregates 2 to 5 μm in diameter that have a random orientation; these aggregates may have formed through flocculation in fluid mud. Cohesive mud was eroded by storms to make intraclastic aggregates 5 to 20 μm in diameter. Mudstone beds are millimetre‐scale, and four microfacies are recognized: Well‐sorted siltstone forms millimetre‐scale combined‐flow ripples overlying scoured surfaces; deposition was from turbulent combined flow. Silt‐streaked claystone comprises parallel, sub‐millimetre laminae of siliceous silt and clay aggregates sorted by shear in the boundary layer beneath a wave‐supported gravity flow of fluid mud. Silty claystone comprises fine siliceous silt grains floating in a matrix of clay and was deposited by vertical settling as fluid mud gelled under minimal current shear. Homogeneous clay‐rich mudstone has little silt and may represent late‐stage settling of fluid mud, or settling from wave‐dissipated fluid mud. It is difficult or impossible to correlate millimetre‐scale beds between thin sections from the same sample, spaced only ca 20 mm apart, due to lateral facies change and localized scour and fill. Combined‐flow ripples in siltstone show strong preferred migration directly down the regional prodelta slope, estimated at ca 1 : 1000. Ripple migration was effected by drag exerted by an overlying layer of downslope‐flowing, wave‐supported fluid mud. In the upper part of the studied section, centimetre‐scale interbeds of very fine to fine‐grained sandstone show wave ripple crests trending shore normal, whereas combined‐flow ripples migrated obliquely alongshore and offshore. Storm winds blowing from the north‐east drove shore‐oblique geostrophic sand transport whereas simultaneously, wave‐supported flows of fluid mud travelled downslope under the influence of gravity. Effective wave base for sand, estimated at ca 40 m, intersected the prodelta surface ca 80 km offshore whereas wave base for mud was at ca 70 m and lay ca 120 km offshore. Small‐scale bioturbation of mud beds co‐occurs with interbedded sandstone but stratigraphically lower, sand‐free mudstone has few or no signs of benthic fauna. It is likely that a combination of soupground substrate, frequent storm emplacement of fluid mud, low nutrient availability and possibly reduced bottom‐water oxygen content collectively inhibited benthic fauna in the distal prodelta.  相似文献   
66.
The Late Coniacian, shallow-marine Bad Heart Formation of the Western Canada foreland basin is very unusual in that it contains economically significant ooidal ironstone. Deposition of shallow-water and iron-rich facies appears to have been localized over the crest and flanks of a subtle intrabasinal arch, in part interpreted as a forebulge and partly attributed to reactivation of the long-lived Peace River Arch. The formation comprises two upward-shoaling allomembers, typically 5–10 m thick, that are bounded by regionally mappable ravinement surfaces. The lower unit, allomember 1, grades up from laminated mudstone to bioturbated silty sandstone, which is abruptly overlain by bioturbated ooidal silty sandstone grading into an almost clastic-free ooidal ironstone up to 7 m thick. Ooidal ironstone was concentrated into NW- to SE-trending ridges, kilometres wide and tens of kilometres long. Ironstone formation appears to have been promoted by: (a) drowning of the arch, which progressively curtailed sediment supply; and (b) enhanced reworking over the shallowly submerged arch and over a fault-bounded block that underwent episodic vertical movement of 10–20 m during Bad Heart deposition. Allomember 2 also shoals upwards from mudstone to bioturbated and laminated silty sandstone but lacks ooids, apparently reflecting a rejuvenated supply of detrital sediment from the arch. The marine ravinement surface above allomember 2 is a Skolithos firmground, above which is developed a regional blanket of ooidal sediment. In the east, ooids are dispersed in a bioturbated silty sandstone with abundant evidence of repeated reworking and early siderite and phosphate cements. Westwards, this facies grades, over about 40 km, into almost clastic-free ooidal ironstone about 5 m thick; the lateral facies change may reflect progressive clastic starvation distal to a low-relief source area. The two allomembers are interpreted to reflect eustatic oscillations of about 10 m, superimposed on episodic tectonic warping and block-faulting events. The development of ooidal ironstone immediately above initial marine flooding surfaces indicates a close relationship to marine transgression, reflecting sediment-starved conditions. Ironstone does not appear to be related to either sequence boundaries or maximum flooding surfaces. The Bad Heart Formation is blanketed by marine mudstone deposited in response to major flexural subsidence and rejuvenation of clastic sources in the Cordillera to the SW.  相似文献   
67.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   
68.
The completeness and the accuracy of the Brest sea level time series dating from 1807 make it suitable for long-term sea level trend studies. New data sets were recently discovered in the form of handwritten tabulations, including several decades of the eighteenth century. Sea level observations have been made in Brest since 1679. This paper presents the historical data sets which have been assembled so far. These data sets span approximately 300 years and together constitute the longest, near-continuous set of sea level information in France. However, an important question arises: Can we relate the past and the present-day records? We partially provide an answer to this question by analysing the documents of several historical libraries with the tidal data using a ‘data archaeology’ approach advocated by Woodworth (Geophys Res Lett 26:1589–1592, 1999b). A second question arises concerning the accuracy of such records. Careful editing was undertaken by examining the residuals between tidal predictions and observations. It proved useful to remove the worst effects of timing errors, in particular the sundial correction to be applied prior to August 1, 1714. A refined correction based on sundial literature [Savoie, La gnomique, Editions Les Belles Lettres, Paris, 2001] is proposed, which eliminates the systematic offsets seen in the discrepancies in timing of the sea level measurements. The tidal analysis has also shown that shallow-water tidal harmonics at Brest causes a systematic difference of 0.023 m between mean sea level (MSL) and mean tide level (MTL). Thus, MTL should not be mixed with the time series of MSL because of this systematic offset. The study of the trends in MTL and MSL however indicates that MTL can be used as a proxy for MSL. Three linear trend periods are distinguished in the Brest MTL time series over the period 1807–2004. Our results support the recent findings of Holgate and Woodworth (Geophys Res Lett) of an enhanced coastal sea level rise during the last decade compared to the global estimations of about 1.8 mm/year over longer periods (Douglas, J Geophys Res 96:6981–6992, 1991). The onset of the relatively large global sea level trends observed in the twentieth century is an important question in the science of climate change. Our findings point out to an ‘inflexion point’ at around 1890, which is remarkably close to that in 1880 found in the Liverpool record by Woodworth (Geophys Res Lett 26:1589–1592, 1999b).  相似文献   
69.
Corrigendum     

Corrigendum

Corrigendum  相似文献   
70.
The prolonged mei-yu/baiu system with anomalous precipitation in the year 2020 has swollen many rivers and lakes,caused flash flooding,urban flooding and landslides,and consistently wreaked havoc across large swathes of China,particularly in the Yangtze River basin.Significant precipitation and flooding anomalies have already been seen in magnitude and extension so far this year,which have been exerting much higher pressure on emergency responses in flood control and mitigation than in other years,even though a rainy season with multiple ongoing serious flood events in different provinces is not that uncommon in China.Instead of delving into the causes of the uniqueness of this year’s extreme precipitation-flooding situation,which certainly warrants in-depth exploration,in this article we provide a short view toward a more general hydrometeorological solution to this annual nationwide problem.A“glocal”(global to local)hydrometeorological solution for floods(GHS-F)is considered to be critical for better preparedness,mitigation,and management of different types of significant precipitation-caused flooding,which happen extensively almost every year in many countries such as China,India and the United States.Such a GHS-F model is necessary from both scientific and operational perspectives,with the strength in providing spatially consistent flood definitions and spatially distributed flood risk classification considering the heterogeneity in vulnerability and resilience across the entire domain.Priorities in the development of such a GHS-F are suggested,emphasizing the user’s requirements and needs according to practical experiences with various flood response agencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号