首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   42篇
  国内免费   5篇
测绘学   12篇
大气科学   56篇
地球物理   174篇
地质学   210篇
海洋学   50篇
天文学   102篇
综合类   3篇
自然地理   26篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   14篇
  2020年   7篇
  2019年   6篇
  2018年   40篇
  2017年   21篇
  2016年   48篇
  2015年   40篇
  2014年   33篇
  2013年   37篇
  2012年   47篇
  2011年   47篇
  2010年   32篇
  2009年   45篇
  2008年   30篇
  2007年   20篇
  2006年   24篇
  2005年   21篇
  2004年   14篇
  2003年   18篇
  2002年   7篇
  2001年   6篇
  2000年   9篇
  1999年   7篇
  1998年   15篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
  1954年   1篇
排序方式: 共有633条查询结果,搜索用时 265 毫秒
141.
This study investigated the distribution of Molgolaimus species (Nematoda) at different hierarchical spatial scales and observed the turnover of species along bathymetrical transects and among transects in two separate geographical regions. Samples from six transects (200–2000 m) from the Southern Oceans (SO) and four bathymetric transects (50–2000 m) from the Western Indian Ocean (WIO) were compared. Of the 30 species recorded, only one was common to both regions. WIO had higher local species richness than the SO. In both regions, the local scale was the greatest contributor to the total species richness. In the SO, there was no difference between species turnover at the different spatial scales, however, in the WIO, the turnover along bathymetrical transects was higher than among separated transects. For the particular genus studied, the evidence suggests that the study area in WIO has more widespread species and was better sampled, while the SO has many restricted species and it is most probably characterized by different biogeographical provinces. At the ocean scale (i.e. WIO versus SO), evolutionary histories may have strongly influenced nematodes species composition, while at local and regional scales, ecological processes are probably promoting species co‐existence and speciation. The high co‐existence of certain species at local scale is partially explained by species preference for different sediment layers.  相似文献   
142.
We have estimated the spatial variability of phytoplankton specific absorption coefficients (a* ph ) in the water column of the California Current System during November 2002, taking into account the variability in pigment composition and phytoplankton community structure and size. Oligotrophic conditions (surface Chl < 0.2 mg m−3) dominated offshore, while mesotrophic conditions (surface Chl 0.2 to 2.0 mg m−3) where found inshore. The specific absorption coefficient at 440 [a* ph (440)] ranged from 0.025–0.281 m2mg−1 while at 675 nm [a* ph (675)] it varied between 0.014 and 0.087 m2mg−1. The implementation of a size index based on HPLC data showed the community structure was dominated by picoplankton. This would reduce the package effect in the variability of a* ph (675). Normalized a ph curves were classified in two groups according to their shape, separating all spectra with peaks between 440 and 550 nm as the second group. Most samples in the first group were from surface layers, while the second group were from the deep chlorophyll maximum or deeper. Accessory photoprotective pigments (APP) tended to decrease with depth and accessory photosynthetic pigments (APS) to increase, indicating the importance of photoprotective mechanisms in surface layers and adaptation to low light at depth. Samples with higher ratios of APP:APS (>0.4) were considered as phytoplankton adapted to high irradiances, and lower ratios (<0.26) as adapted to low irradiances. We found a good relationship between APP:APS and a* ph (440) for the deeper layer (DCM and below), but no clear evidence of the factors causing the variability of a* ph (440) in the upper layer.  相似文献   
143.
Abstract. Proportions of foraminifers, tintinnids, polycystine radiolarians, pteropods and crustacean larval stages were estimated in a collection of 76 vertically stratified (0 – 100 m) 30 µm net microplankton samples from 16 stations along the Argentine shelf-slope (around 200 m isobath – between 40 and 56° S), covered on 13 – 18 November 1996. Tintinnids were identified to species. Relative abundances of the microzooplankton assessed and chlorophyll a values allow to define two contrasting groups of stations: 'deep' and 'shallow'. The former, located in pelagic, purely subantarctic Malvinas Current waters, hosted higher proportions of foraminifers and lower proportions of tintinnids, as well as less chlorophyll a (all differences were significant at the 0.1 % level). 'Shallow' stations were located in the area of the thermohaline front where the Patagonian Current comes in contact with the Malvinas Current, and were generally characterized by higher chlorophyll a levels (up to 3.7 µg Chl a  · l–1). The distribution of tintinnid species, on the other hand, allowed no discrimination between these two areas, although some of the dominant forms showed much higher relative abundances in one of the two groups of stations. Twenty-six tintinnid taxa were recorded, yet only 6 accounted for 95 % of the specimens identified. Tintinnid taxocoenoses were characterized by a few abundant species and many rare ones. Numbers of tintinnid species and specific diversity did not differ noticeably with depth and latitude. Cape Horn Current waters were detected in the area by the presence of expatriated organisms presumably originating at mid-latitudes in the South Pacific Ocean.  相似文献   
144.
In many catchments, the geographical demarcation does not coincide with the limits of the aquifers, so groundwater may be exchanged beyond their topographic boundaries. By studying groundwater exchanges, the natural resources of a catchment can be better assessed, and the divergences between hydrological models and measurements can be explained. The aim of this work is to reveal the importance of including groundwater exchanges in the hydrological modelling of some catchments, using a water balance model. For this purpose, a simple example is conducted. The so‐called parent model scheme is modified to only allow groundwater exchanges, and it is applied to the headwater of the Segura River Basin District, located in the southeast of Spain. This area is selected because groundwater plays an important role in surface hydrology. The results reveal that groundwater exchanges cannot be neglected in some catchments when assessing water resources because their integration in the hydrological model corrects errors in the water balance. Moreover, this paper proves that water balance models are a useful tool for estimating groundwater exchanges between catchments, which can be contrasted with more complex distributed models or isotopic tracers if there is enough information available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
145.
Depression storage (DS) is the maximum storage of precipitation and runoff in the soil surface at a given slope. The DS is determined by soil roughness that in agricultural soils is largely affected by tillage. The direct measurement of DS is not straightforward because of the natural permeability of the soil. Therefore, DS has generally been estimated from 2D/3D empirical relationships and numerical algorithms based on roughness indexes and height measurements of the soil surface, respectively. The objective of this work was to evaluate the performance of some 2D models for DS, using direct and reliable measurements of DS in an agricultural soil as reference values. The study was carried out in experimental microplots where DS was measured in six situations resulting from the combination of three types of tillage carried out parallel and perpendicular to the main slope. Those data were used as reference to evaluate four empirical models and a numerical method. Longitudinal altitudinal profiles of the relief were obtained by a laser profilometer. Infiltration measurements were carried out before and after tillage. The DS was largely affected by tillage and its direction. Highest values of DS are found on rougher surfaces mainly when macroforms cut off the dominant slope. The empirical models had a limited performance while the numerical method was the most effective, even so, with an important variability. In addition, a correct hydrological management should take into account that each type of soil tillage affects infiltration rate differently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
146.
Many morphological elements in Cuba's landscape (e.g. marine terraces, tidal notches) demonstrate that coastal uplift has taken place, but the rate at which this occurs is not known. Carbonate phreatic overgrowths on speleothems have been found in a cave in Central North Cuba, ~1 km from the present coastline at 16 m asl. They form exceptional and unique mushroom‐shaped speleothems and balconies decorating the walls of the rooms. These phreatic overgrowths on speleothems (POS) formed at the oscillating air–water interface in sea‐level controlled anchialine lakes. U/Th dating of these overgrowths suggests ages that are compatible with the Marine Isotope Stage 5e (i.e. 130–115 ka). These POS have fixed this sea‐level highstand and demonstrate that this part of Cuba has been subjected to a much lower uplift rate than previously reported, that is, less than 0.1 mm/year since the last interglacial.  相似文献   
147.
No-till (NT) is a conservation system that improves the hydrological regime of agricultural slopes by providing greater surface protection and benefits to the physical and hydrological properties of soils. However, the isolated use of NT is not enough to control runoff and its associated degradation processes. Therefore, this study aimed to evaluate the runoff of agricultural slopes under NT under different runoff control conditions by monitoring 63 rainfall events in two 2.4-ha zero-order catchments and 27 rainfall events in four 0.6-ha macroplots. The catchments are paired and similar in terms of the type of soil and relief, but different regarding the presence of terraces. The macroplots have different soil and crop management systems. By using monitoring techniques, the hyetographs and hydrographs revealed the influence of the different types of management on the catchments and macroplots and allowed rainfall characteristics, runoff volume, runoff coefficients, water infiltration, peak runoff, response times, and curve number to be analysed. The terraces positively affected the NT and controlled runoff and related variables, in addition to infiltration significantly increasing and runoff reducing in the terraced catchment. All the hydrological information assessed pointed to the positive effects provided by the presence of the terraces. The results in the macroplots showed that high amounts of phytomass and/or chiselling do not control runoff and its correlated variables in medium and high magnitude events. The study concludes by underlining the need for additional measures to control runoff (terraces), even in areas under NT and with high phytomass production. Additionally, the study emphasizes the importance of monitoring at the catchment scale to better understand the hydrological behaviour of agricultural areas and provide the necessary parameters to effectively control runoff.  相似文献   
148.
149.
150.
Coal‐forming environments require humid to perhumid conditions. Tectonics governs the size, location and availability of coal seams developed in such environments. While large Pennsylvanian paralic basins generated thick and continuous coal seams, many other small coeval basins, which were tectonically active, developed a puzzling succession, with carbonaceous deposits that varied in size, thickness and the nature of the coal‐forming flora. This study, conducted in the Peñarroya‐Belmez‐Espiel coalfield, a Variscan strike‐slip basin in the south of Spain, provides insights into this subject. The coal seams analysed, generated in different depositional environments, have quantitatively different palynological assemblages. Lacustrine coals are dominated by lycopsids; distal alluvial plain/marginal lacustrine coals are dominated by sphenophytes and tree ferns, and middle alluvial fan coals are dominated by sphenophytes, tree ferns and lycopsids. This means that when conditions were favourable for peat accumulation, peat accumulated regardless of the nature of the available flora.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号