首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   21篇
  国内免费   32篇
测绘学   17篇
大气科学   63篇
地球物理   24篇
地质学   19篇
海洋学   7篇
综合类   32篇
自然地理   47篇
  2022年   6篇
  2021年   12篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   9篇
  2008年   7篇
  2007年   16篇
  2006年   15篇
  2005年   20篇
  2004年   10篇
  2003年   17篇
  2002年   10篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
11.
River regulation and river training have been performed for various purposes and negative effects have been shown in numerous cases. In some cases the negative effects are so serious that humans have to consider to "renaturalize" the regulated rivers. Only by using the strategy of integrated river management the diverse river uses and natural fluvial processes and ecological systems may be harmonized. Based on analysis of case studies and data collected from literatures this paper presents the concept of integrated river management and four principles of river training. The integrated river management comprises: 1) taking the watershed, upper stream basin including the tributaries, middle and lower reaches and the estuary as an integrated entity in the planning, design and management; and 2) mitigating or controlling the negative impacts on hydrology, erosion and sedimentation, fluvial processes, land use and river use, environment and ecology while in achieving economic benefit from water resources development, flood safety management and hydropower exploitation. River training and management should be in accordance with the four principles: 1) extending the duration of river water flowing on the continent, which may be achieved by extending the river course or reducing the flow velocity; 2) controlling various patterns of erosions and reducing the sediment transportation in the rivers; 3) increasing the diversity of habitat and enhancing the connectivity between the river and riparian waters; and 4) restoring natural landscapes.  相似文献   
12.
13C of 367 C3 herbaceous plants was measured in loess area in northern China. Their δ13C values vary between −21.7%. and −30.0%., with a mean of −26.7%.. In the center of Loess Plateau (semimoist area) with annual precipitation of 400–600 mm, the δ13 C values of C3 herbaceous plants range from −24.4%. to −28.5%., with a mean of −27.5%.. In the west of Loess Plateau (semiarid and arid area) with annual precipitation less than 400 mm, they range between −21.7%. and −30.0%., with a mean of −26.2%.. Annual precipitation is the main factor that makes δ13C values of C3 herbaceous plants in the west greater than those in the central Loess Plateau. The composition of δ13C in C3 plants increases with deceasing annual precipitation, and the mean change is −49%./100 mm.  相似文献   
13.
方向数据是矢量数据的标量表示,通常标量数据的插值方法不适用于方向数据。本文根据方向数据的特征,把其分解成沿坐标轴的分量,通过对分量数据的插值形成表面,最后合成反算出方向数据,给出了一种对于方向数据的行之有效的插值方法;并用实验进行了验证,对其插值结果和精度进行了统计和分析,取得了较为理想的内插结果。  相似文献   
14.
科技部科研院所社会公益专项资金重点项目“突发性强灾害天气预警系统(EWSSWE)”2006年6月6日通过验收。该系统是一个依托动力模式的数值预警系统,以WWW为平台,融贯了多种天气预报新技术,集富含信息量的强对流指数诊断预测、基于卫星和雷达产品的外推以及动力模式数值天气预报于一体;该系统开发的冰雹预报产品使本来并非预报量的冰雹作为动力模式后处理的产品输出从而赋予动力模式以直接预报冰雹的功能;  相似文献   
15.
Recent stable carbon isotope studies have shown that the occurrence of C4 plants on the Earth was much later than that of C3 plants and there was a global ex-pansion of C4 biomass around 5―8 million years ago[1]. Although far fewer species use the C4 pat…  相似文献   
16.
Language plays a vital role in the communication, sharing and transmission of information among human beings. Geographical languages are essential for understanding, investigating, representing and propagating geo-spatial information. Geographical languages have developed and evolved gradually with improvements in science, technology and cognitive levels. Concerning the theoretical progress from geographical information ontology, epistemology and linguistic theory, this paper firstly puts forward the concept of a GIS language and discusses its basic characteristics according to changes in the structures, functions and characteristics of geographical languages. This GIS language can be regarded as a system of synthetic digital symbols. It is a comprehensive representation of geographical objects, phenomena and their spatial distributions and dynamic processes. This representation helps us generate a universal perception of geographical space using geographical scenarios or symbols with geometry, statuses, processes, spatio-temporal relationships, semantics and attributes. Furthermore, this paper states that the GIS language represents a new generation of geographical language due to its intrinsic characteristics, structures, functions and systematic content. Based on the aforementioned theoretical foundation, this paper illustrates the pivotal status and contributions of the GIS language from the perspective of geographical researchers. The language of GIS is a new geographical language designed for the current era, with features including spatio-temporal multi-dimension representation, interactive visualization, virtual geographical scenarios, multi-sensor perception and expedient broadcasting via the web. The GIS language is the highest-level geographical language developed to date, integrating semantic definitions, feature extraction, geographical dynamic representation and spatio-temporal factors and unifying the computation of geographical phenomena and objects. The GIS language possesses five important characteristics: abstraction, systematicness, strictness, precision and hierarchy. In summary, the GIS language provides a new means for people to recognize, understand and simulate entire geo-environments. Therefore, exploration of the GIS language’s functions in contemporary geographical developments is becoming increasingly important. Similarly, construction of the conceptual model and scientific systems of the GIS language will promote the development of the disciplines of geography and geographical information sciences. Therefore, this paper investigates the prospects of the GIS language from the perspectives of digital technology, geographical norms, geographical modeling and the disciplinary development of geography.  相似文献   
17.
Global climate change has been one of the most concerned environmental problems in the world since the 1980s. Since stable carbon composition (13C) in plant tissues can record abundant information on climate changes, it has been widely used as an important climate proxy in global change studies and becomes a powerful tool for obtaining paleoclimate information, understanding paleoenvironment reconstruction and modern climate change, and predicting future climate trends. However, a lot of potential uncertainties have always involved in the reconstruction of paleoclimate and paleoenvironment by carbon isotope of the past period sediment or fossils. Among them, the most dominant uncertainty is due to our poor understanding of the relations between carbon isotope ratios of plants and climatic factors and the climatic and environmental significance indicated by modern plant 13C. This may limit the application of plant 13C in the study of climatic and environmental changes. Based on the Summary of plant 13C fractionation and carbon isotope distribution of different photosynthetic plants, the effects of environmental factors, e.g., temperature, precipitation, atmospheric CO2 concentration, and altitude on terrestrial plant 13C and their relationships were reviewed in this paper, and the response mechanism of plant 13C to climate changes were also analyzed. Furthermore, the current existing problems and the future prospects in carbon isotope study were discussed. It is pointed out that strengthening some studies such as the response of C4 plants 13C to climate environmental parameters, the transformation relation of different scale plant 13C, intersection and permeation of related disciplines, and various proxies and scientific method, will undoubtedly make us have a more accurate understanding of the climate history and eventually broaden the development of the field during the process of global change study by plant carbon isotope techniques.  相似文献   
18.
Xu  Guoan  Iskander  Magued  Ads  Abdelaziz  Jing  Hongwen 《Acta Geotechnica》2022,17(5):1949-1969

One of the most important problems during tunneling in soft rock is deformation and fracturing of the rock during tunneling. The problem was successfully explored by using a transparent rock surrogate to simulate the behavior of soft rock, which permitted visualizing conditions within the rock. Synthetic soft rock was made using consolidated fused quartz saturated with a blend of two mineral oils that have the same refractive index as the quartz. The tunnel was simulated using a smooth aluminum tube and two tunneling methods representing machining and blasting were considered. Two observation planes made of seeding particles were pre-placed within the model and used to track soil movements and crack propagation. Images of both planes were captured simultaneously using two orthogonal cameras. Rock deformations were concentrated in the vicinity of the tunnel face, and deformation rates behind the tunnel face were significantly greater than those ahead of the face. However, deformation rates and patterns varied considerably depending on the excavation method/rate. Fracturing mechanisms exhibited similar differences, for machining deformations occurred higher above the crown and propagated toward the tunnel face. Conversely for blasting deformations sprang from the crown upwards. These observations can assist with numerical simulations and in planning tunnel support systems.

  相似文献   
19.
地形复杂度的多因子综合评价方法   总被引:1,自引:0,他引:1  
地形复杂度指标(Terrain Complexity Index,TCI)是评价地表起伏和褶皱程度的指标,广泛应用于DEM数字地形分析、数据综合和建模、地貌分类以及DEM精度研究等领域。然而目前地形复杂度指标多数采用单一地形指标或区域统计指标,缺乏局部的复合评价指标。为此,引入多因子分析方法和局部窗口分析方法,探讨一种基于格网DEM数据的复合地形复杂度指标(Compound Terrain Complexity Index,CTCI)的建模方法。首先利用多因子评价方法选取4种局部地形因子(局部高差、局部标准差、局部褶皱度、局部全曲率),之后利用局部窗口分析方法获取各指标的计算值,最后融合4种因子得到每个格网的CTCI。在实验分析中,选取了3个典型地貌样区和1个混合地貌样区,实验结果表明:CTCI能从整体上区分不同典型地貌区的地形复杂程度,同时CTCI在局部范围与混合地貌样区的等高线的密度和变化程度有较好的吻合,表明CTCI能从整体和局部反映地表的起伏和褶皱变化,是较好的地形复杂度评价指标。  相似文献   
20.
黄土沟谷是黄土地貌中最有活力、最具变化、最富特色的对象单元,黄土高原千沟万壑的地貌形态以及触目惊心的侵蚀状态也让区域内沟谷地貌的形成、发育及演化问题成为研究中焦点及前沿性科学问题。近年来,诸多学者采用地学测年法、特征表达法、监测模拟法力图实现对黄土沟谷发育演化进程中“过去-现代-未来”的科学认知。这些研究在相当程度上丰富了黄土沟谷发育过程的认知。本文梳理了黄土高原沟谷地貌演化相关研究的现状,并从黄土高原地貌演化、黄土沟谷发育、基于DEM的沟谷信息提取与表达等研究进行了系统的回顾、梳理与分析。此外,本文提出“黄土沟道剖面群组”概念与方法,试图从新的视角审视黄土沟谷地貌发育演化过程。沟道剖面在黄土沟谷发育演化进程中传递物质能量和累积地形动力,并通过径流节点的串联实现剖面群的连接与组合,形成独特的剖面“群组”模式;该沟道剖面群组是集黄土沟谷地貌特征与过程于一体的综合信息集成体,其三维空间结构是对黄土沟谷地貌发育演化的高度抽象与映射,并可望进一步丰富黄土高原数字地形分析理论与方法体系,为黄土高原黄土地貌成因机理与空间分异格局带来创新的认识。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号