首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   22篇
  国内免费   5篇
测绘学   11篇
大气科学   22篇
地球物理   66篇
地质学   146篇
海洋学   16篇
天文学   38篇
自然地理   19篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   8篇
  2019年   14篇
  2018年   13篇
  2017年   16篇
  2016年   23篇
  2015年   18篇
  2014年   16篇
  2013年   21篇
  2012年   13篇
  2011年   30篇
  2010年   30篇
  2009年   18篇
  2008年   13篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   10篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1986年   2篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
131.
A sea ice record for Barrow Strait in the Canadian Arctic Archipelago (CAA) is presented for the interval 10.0–0.4 cal. kyr BP. This Holocene record is based primarily on the occurrence of a sea ice biomarker chemical, IP25, isolated from a marine sediment core obtained from Barrow Strait in 2005. A core chronology is based on 14C AMS dating of mollusc shells obtained from ten horizons within the core. The primary IP25 data are compared with complementary proxy data obtained from analysis of other organic biomarkers, stable isotope composition of bulk organic matter, benthic foraminifera, particle size distributions and ratios of inorganic elements. The combined proxy data show that the palaeo-sea ice record can be grouped according to four intervals, and these can be contextualised further with respect to the Holocene Thermal Maximum (HTM). Spring sea ice occurrence was lowest during the early–mid Holocene (10.0–6.0 cal. kyr BP) and this was followed by a second phase (6.0–4.0 cal. kyr BP) where spring sea ice occurrence showed a small increase. Between 4.0 and 3.0 cal. kyr BP, spring sea ice occurrence increased abruptly to above the median and we associate this interval with the termination of the HTM. Elevated spring sea ice occurrences continued from 3.0 to 0.4 cal. kyr BP, although they were more variable on shorter timescales. Within this fourth interval, we also provide evidence for slightly lower and subsequently higher spring sea ice occurrence during the Mediaeval Warm Period and the Little Ice Age respectively. Comparisons are made between our proxy data with those obtained from other palaeo-climate and sea ice studies for the CAA.  相似文献   
132.
We report observations from room temperature static recrystallization experiments (annealing times from minutes to year) of cold-pressed, synthetic, coarse-grained, wet sodium chloride, prepared by broad ion beam polishing and SEM observations at cryogenic temperature to observe directly the brine in grain boundaries. At all stages of annealing, the majority of the brine in the samples is connected in 2D sections along grain boundaries. Another part of the brine is in isolated brine inclusion arrays along grain boundaries and in brine inclusions left behind by migrating brine-filled grain boundaries. Most of these boundaries are mobile because the aggregate is coarsening. We interpret that the boundaries without observable brine films (<15 nm) and brine inclusion arrays are healed and immobile. Evolution of grain boundary structure involves three major processes. First, dissolution on one side of the grain boundary and precipitation on the other side, resulting in grain boundary migration. Second, the development of facets formed by low-index crystallographic planes of the grains bounding the grain boundary brine. When both sides of a grain boundary are able to develop low-index facets in a thick brine film, the resulting impingement boundary is interpreted to be immobile and may prevent the new grain from migrating into a deformed neighbor. When one side of a faceted boundary consists of low-index crystallographic planes and the other side passively follows this faceted shape along irrational surfaces, the boundary is mobile. Third, the healing of grain boundary brine films, producing solid–solid grain boundaries without resolvable brine films.  相似文献   
133.
The 400 km-long Karakax left-lateral strike-slip fault is the westernmost segment of the Altyn Tagh fault. It separates northwestern Tibet to the south from the Tarim basin to the north. The western section of the Karakax fault exhibits clear co-seismic surface ruptures of past large earthquakes. Geomorphic offset measurements from the field and high-resolution Ikonos images along 1.5 km across the Sanshiliyingfang fan and along 55 km of the fault, range from 3 to 28 m, with distinct clusters at 6 ± 2(3), 14 ± 2, 19 ± 2 and 24 ± 3 m. The cluster of the smallest offsets around 6 m (full range from 3 to 10 m) distributed over a minimum length of 55 km, is attributed to the last largest surface rupturing event that testifies of the occurrence of a magnitude Mw 7.4-7.6 earthquake along the Karakax fault. We interpret the other offset clusters as the possible repetition of similarly sized events thus favoring a characteristic slip model for the Karakax fault. In a 3 m-deep trench dug across the active trace of the fault we can identify the main rupture strands of the last and penultimate events. The penultimate event horizon, a silty-sand layer, has been radiocarbon dated at 975-1020 AD (AMS 14C age). It is proposed that large Mw 7.4-7.6 events with co-seismic slip of about 6 m rupture the Karakax fault with a return time of about 900 years implying an average slip-rate of about 6-7 mm/years during the late Holocene. These results suggest that the Karakax fault is the largest left-lateral strike-slip fault at the rim of northwestern Tibet accommodating eastward movement of Tibet due to the India-Eurasia collision.  相似文献   
134.
Granular soils have the inherent ability to develop load transfers in their mass. Mechanisms of load transfers are used as a basic principle of many civil and geotechnical engineering applications. However, their complexity makes it difficult to formulate relevant design methods for such works. The trapdoor problem is one of the ways to reproduce load transfers by the arching effect in a granular layer in non-complex conditions. In addition, many analytical solutions for the prediction of load transfer mechanisms are based on the trapdoor problem. However, some of the parameters required are still being widely discussed, in particular the ratio of horizontal stress to vertical stress. For this paper, an experimental device for trapdoor tests in plane strain conditions was created and several geomaterials were tested. Three phases in the response of the materials were consistently observed. Each of these phases corresponded to a specific displacement of the trapdoor. A first phase of high load transfer was observed followed by a transition phase which was followed by a critical phase for which the load transfer amplitude increased and stabilized. Analytical solutions and experimental values of load transfers were compared. Considerable differences between the stress ratio needed to fit the experimental data and the stress ratio proposed in the analytical models were noted. Based on the conclusions of the experimental study, the discrete element method was used to model the same trapdoor problem. A wide range of granular materials was modeled and tested in the trapdoor problem. The three phases in the response of the layer were also observed in the numerical modeling. In addition, it was shown that the shear strength of the material is the key parameter of load transfers: peak shear resistance for the small displacements of the trapdoor and critical shear strength for the larger displacements. A micro-mechanical analysis showed that the effective stress ratio in the sheared zone does not vary as much with shear strength. Stress ratios here were again greater than those proposed in the analytical solutions. Nevertheless, the relevance of the solution of Terzaghi was confirmed as soon as the stress ratio was correctly chosen.  相似文献   
135.
This paper focuses on fault-related uncertainties in the subsurface, which can significantly affect the numerical simulation of physical processes. Our goal is to use dynamic data and process-based simulation to update structural uncertainty in a Bayesian inverse approach. We propose a stochastic fault model where the number and features of faults are made variable. In particular, this model samples uncertainties about connectivity between the faults. The stochastic three dimensional fault model is integrated within a stochastic inversion scheme in order to reduce uncertainties about fault characteristics and fault zone layout, by minimizing the mismatch between observed and simulated data.  相似文献   
136.
Determining whether or not Pluto possesses, or once possessed, a subsurface ocean is crucial to understanding its astrobiological potential. In this study we use a 3D convection model to investigate Pluto’s thermal and spin evolution, and the present-day observational consequences of different evolutionary pathways. We test the sensitivity of our model results to different initial temperature profiles, initial spin periods, silicate potassium concentrations and ice reference viscosities. The ice reference viscosity is the primary factor controlling whether or not an ocean develops and whether that ocean survives to the present day. In most of our models present-day Pluto consists of a convective ice shell without an ocean. However if the reference viscosity is higher than 5 × 1015 Pa s, the shell will be conductive and an ocean should be present. For the nominal potassium concentration the present-day ocean and conductive shell thickness are both about 165 km; in conductive cases an ocean will be present unless the potassium content of the silicate mantle is less than 10% of its nominal value. If Pluto never developed an ocean, predominantly extensional surface tectonics should result, and a fossil rotational bulge will be present. For the cases which possess, or once possessed, an ocean, no fossil bulge should exist. A present-day ocean implies that compressional surface stresses should dominate, perhaps with minor recent extension. An ocean that formed and then re-froze should result in a roughly equal balance between (older) compressional and (younger) extensional features. These predictions may be tested by the New Horizons mission.  相似文献   
137.
138.
The upper Tortonian Metochia marls on the island of Gavdos provide an ideal geological archive to trace variations in Aegean sediment supply as well as changes in the North African monsoon system. A fuzzy-cluster analysis on the multiproxy geochemical and rock magnetic dataset of the astronomically tuned sedimentary succession shows a dramatic shift in the dominance of 'Aegean tectonic' clusters to 'North African climate' clusters. The tectonic signature, traced by the starvation of the Cretan sediment, now enables to date the late Tortonian basin foundering on Crete, related to the tectonic break-up of the Aegean landmass, at c.  8.2 Ma. The synchronous decrease in the North African climate proxies is interpreted to indicate a change in the depositional conditions of the sink rather than a climatic change in the African source. This illustrates that interpretations of climate proxies require a multiproxy approach which also assesses possible contributions of regional tectonism.  相似文献   
139.
Super-chondritic 142Nd signatures are ubiquitous in terrestrial, Martian and lunar samples, and indicate that the terrestrial planets may have accreted from material with Sm/Nd ratio higher than chondritic. This contradicts the long-held view that chondrites represent a reference composition for the 147Sm-143Nd system. Using coupled 146Sm-142Nd and 147Sm-143Nd systematics in planetary samples, we have proposed a new set of values for the 147Sm/144Nd and 143Nd/144Nd ratios of the bulk silicate Earth (Caro et al., 2008). Here, we revise the Bulk Silicate Earth estimates for the 87Rb-87Sr and 176Lu-176Hf systems using coupled Sr-Nd-Hf systematics in terrestrial rocks. These estimates are consistent with Hf-Nd systematics in lunar samples. The implications of a slightly non-chondritic silicate Earth with respect to the geochemical evolution of the mantle-crust system are then examined. We show that the Archean mantle has evolved with a composition indistinguishable from that of the primitive mantle until about 2 Gyr. Positive ε143Nd and ε176Hf values ubiquitous in the Archean mantle are thus accounted for by the non-chondritic Sm/Nd and Lu/Hf composition of the primitive mantle rather than by massive early crustal formation, which solves the paradox that early Archean domains only have a limited extension in the present-day continents. The Sm-Nd and Lu-Hf evolution of the depleted mantle for the past 3.5 Gyr can be entirely explained by continuous extraction of the continents from a well-mixed mantle. Thus, in contrast to the chondritic Earth model, Sm-Nd mass balance relationships can be satisfied without the need to call upon hidden reservoirs or layered mantle convection. This new Sm-Nd mass balance yields a scenario of mantle evolution consistent with trace element and noble gas systematics. The high 3He/4He mantle component is associated with 143Nd/144Nd compositions indistinguishable from the bulk silicate Earth, suggesting that the less degassed mantle sources did not experience significant fractionation for moderately incompatible elements.  相似文献   
140.
Global change in land water storage and its effect on sea level is estimated over a 7-year time span (August 2002 to July 2009) using space gravimetry data from GRACE. The 33 World largest river basins are considered. We focus on the year-to-year variability and construct a total land water storage time series that we further express in equivalent sea level time series. The short-term trend in total water storage adjusted over this 7-year time span is positive and amounts to 80.6 ± 15.7 km3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Zambezi, Orinoco and Ob basins. The largest negative contributions (water deficit) come from the Mississippi, Ganges, Brahmaputra, Aral, Euphrates, Indus and Parana. Expressed in terms of equivalent sea level, total water volume change over 2002–2009 leads to a small negative contribution to sea level of –0.22 ± 0.05 mm/yr. The time series for each basin clearly show that year-to-year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. We also compare the interannual variability of total land water storage (removing the mean trend over the studied time span) with interannual variability in sea level (corrected for thermal expansion). A correlation of ∼0.6 is found. Phasing, in particular, is correct. Thus, at least part of the interannual variability of the global mean sea level can be attributed to land water storage fluctuations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号