全文获取类型
收费全文 | 39547篇 |
免费 | 3228篇 |
国内免费 | 4924篇 |
专业分类
测绘学 | 2601篇 |
大气科学 | 4957篇 |
地球物理 | 8285篇 |
地质学 | 19829篇 |
海洋学 | 3088篇 |
天文学 | 2233篇 |
综合类 | 3563篇 |
自然地理 | 3143篇 |
出版年
2024年 | 143篇 |
2023年 | 408篇 |
2022年 | 913篇 |
2021年 | 1065篇 |
2020年 | 905篇 |
2019年 | 955篇 |
2018年 | 5600篇 |
2017年 | 4753篇 |
2016年 | 3427篇 |
2015年 | 1078篇 |
2014年 | 1147篇 |
2013年 | 1039篇 |
2012年 | 1949篇 |
2011年 | 3662篇 |
2010年 | 2953篇 |
2009年 | 3147篇 |
2008年 | 2630篇 |
2007年 | 2988篇 |
2006年 | 648篇 |
2005年 | 739篇 |
2004年 | 814篇 |
2003年 | 787篇 |
2002年 | 619篇 |
2001年 | 452篇 |
2000年 | 492篇 |
1999年 | 630篇 |
1998年 | 541篇 |
1997年 | 472篇 |
1996年 | 472篇 |
1995年 | 366篇 |
1994年 | 362篇 |
1993年 | 311篇 |
1992年 | 278篇 |
1991年 | 184篇 |
1990年 | 152篇 |
1989年 | 130篇 |
1988年 | 99篇 |
1987年 | 71篇 |
1986年 | 57篇 |
1985年 | 47篇 |
1984年 | 32篇 |
1983年 | 29篇 |
1982年 | 26篇 |
1981年 | 32篇 |
1980年 | 30篇 |
1979年 | 15篇 |
1978年 | 9篇 |
1977年 | 5篇 |
1976年 | 9篇 |
1958年 | 9篇 |
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
91.
针对精度差、频率低的浮动车数据特点,给出了空间和拓扑约束下的最短路径浮动车数据地图匹配算法,基于不同采样频率的匹配结果证明算法准确度高。基于武汉市浮动车数据的匹配结果表明,算法具有高可靠性,可以用于浮动车数据的交通信息提取与特征挖掘。 相似文献
92.
Optimization of land use structure consists of economic and social and ecological optimization. Applying the minds of system engineering and principles of ecology, this paper presents such thoughts: the optimal forest-coverage rate calculated according to the reality of a district is set as main standard of ecological rationality in the district; through considering the value of ecosystem services of the land with GREEN equivalent (mainly cultivated land and grassland) and based on the rule, GREEN equivalent, this paper introduces the area conversion between woodland and cultivated land, also between woodland and grassland; this paper establishes a multi-dimension controlling model of optimization of land use structure. In addition, a multi-objective linear programming model for optimization of land use structure is designed. In the end, this paper tests and verifies this theory of ecological optimization, taking Qionghai city in Hainan Province as an example. 相似文献
93.
固体潮对三峡地区地壳垂直形变和重力变化的影响分析 总被引:1,自引:0,他引:1
利用IERS协议上的方法和DE405星历文件,基于三峡地区CORS站和重力台站位置,计算了从2011年到2015年6月固体潮每2 h对三峡地区地壳垂直形变和重力变化的影响,并计算了2012年12月14日大潮期间固体潮影响分布。研究发现,三峡地区固体潮有很强的周期性,存在半月和半年的长周期、一天和半天的短周期。三峡地区农历每月月中和月底前后有2次大潮,月中和月底的大潮潮差相差约1/4;每年冬季(月球赤纬28°36',约11、12、1月)和夏季(约5、6、7月,太阳高度角接近最大)大潮潮差大,春季和秋季大潮潮差小。大地高最大潮高0.346 m,最低潮高-0.190 m(参考历元2000.0);固体潮对重力与对垂直形变影响异相,最大值110 μGal,最小值-200 μGal。区域固体潮呈明显的条带分布,固体潮对垂直形变与重力变化影响的增减方向相反。本文的研究成果可用于CORS站、重力台站的固体潮影响分析,为局部固体潮相关研究提供参考。 相似文献
94.
95.
Kousik Biswas Debashish Chakravarty Pabitra Mitra Arundhati Misra 《Journal of the Indian Society of Remote Sensing》2017,45(6):913-926
Interferometric Synthetic Aperture Radar (InSAR), nowadays, is a precise technique for monitoring and detecting ground deformation at a millimetric level over large areas using multi-temporal SAR images. Persistent Scatterer Interferometric SAR (PSInSAR), an advanced version of InSAR, is an effective tool for measuring ground deformation using temporally stable reference points or persistent scatterers. We have applied both PSInSAR and Small Baseline Subset (SBAS) methods, based on the spatial correlation of interferometric phase, to estimate the ground deformation and time-series analysis. In this study, we select Las Vegas, Nevada, USA as our test area to detect the ground deformation along satellite line-of-sight (LOS) during November 1992–September 2000 using 44 C-band SAR images of the European Remote Sensing (ERS-1 and ERS-2) satellites. We observe the ground displacement rate of Las Vegas is in the range of ?19 to 8 mm/year in the same period. We also cross-compare PSInSAR and SBAS using mean LOS velocity and time-series. The comparison shows a correlation coefficient of 0.9467 in the case of mean LOS velocity. Along this study, we validate the ground deformation results from the satellite with the ground water depth of Las Vegas using time-series analysis, and the InSAR measurements show similar patterns with ground water data. 相似文献
96.
Zhenliang Xu Yi Sun Zhenling Ma Yanhuan Li 《Journal of the Indian Society of Remote Sensing》2017,45(6):939-943
This paper has established a high-precision hierarchical estimated pose parameters of image. Firstly, we select corresponding three image points of 3D points which constitute the largest area in image as a base, in order to estimate the depth and translate information; then based on the above method, we obtain the scale parameter of camera exterior information. And finally, the topic is transformed to a problem of estimating rotation relationship by vector, using Procrustes theory to obtain the best estimate of the angle elements of exterior parameters. The method can effectively solve problems which depth and coupling pose parameters cannot deal with. Experimental results show that this method of determining position and orientation parameter estimation model is of briefness, easy convergence and it can also achieve higher parameter estimation accuracy than the direct projection matrix factorization. 相似文献
97.
Single-frequency precise point positioning (SF-PPP) is a potential precise positioning technique due to the advantages of the high accuracy in positioning after convergence and the low cost in operation. However, there are still challenges limiting its applications at present, such as the long convergence time, the low reliability, and the poor satellite availability and continuity in kinematic applications. In recent years, the achievements in the dual-frequency PPP have confirmed that its performance can be significantly enhanced by employing the slant ionospheric delay and receiver differential code bias (DCB) constraint model, and the multi-constellation Global Navigation Satellite Systems (GNSS) data. Accordingly, we introduce the slant ionospheric delay and receiver DCB constraint model, and the multi-GNSS data in SF-PPP modular together. In order to further overcome the drawbacks of SF-PPP in terms of reliability, continuity, and accuracy in the signal easily blocking environments, the inertial measurements are also adopted in this paper. Finally, we form a new approach to tightly integrate the multi-GNSS single-frequency observations and inertial measurements together to ameliorate the performance of the ionospheric delay and receiver DCB-constrained SF-PPP. In such model, the inter-system bias between each two GNSS systems, the inter-frequency bias between each two GLONASS frequencies, the hardware errors of the inertial sensors, the slant ionospheric delays of each user-satellite pair, and the receiver DCB are estimated together with other parameters in a unique Kalman filter. To demonstrate its performance, the multi-GNSS and low-cost inertial data from a land-borne experiment are analyzed. The results indicate that visible positioning improvements in terms of accuracy, continuity, and reliability can be achieved in both open-sky and complex conditions while using the proposed model in this study compared to the conventional GPS SF-PPP. 相似文献
98.
This work is an investigation of three methods for regional geoid computation: Stokes’s formula, least-squares collocation (LSC), and spherical radial base functions (RBFs) using the spline kernel (SK). It is a first attempt to compare the three methods theoretically and numerically in a unified framework. While Stokes integration and LSC may be regarded as classic methods for regional geoid computation, RBFs may still be regarded as a modern approach. All methods are theoretically equal when applied globally, and we therefore expect them to give comparable results in regional applications. However, it has been shown by de Min (Bull Géod 69:223–232, 1995. doi: 10.1007/BF00806734) that the equivalence of Stokes’s formula and LSC does not hold in regional applications without modifying the cross-covariance function. In order to make all methods comparable in regional applications, the corresponding modification has been introduced also in the SK. Ultimately, we present numerical examples comparing Stokes’s formula, LSC, and SKs in a closed-loop environment using synthetic noise-free data, to verify their equivalence. All agree on the millimeter level. 相似文献
99.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%. 相似文献
100.
Representing the spherical harmonic spectrum of a field on the sphere in terms of its amplitude and phase is termed as its polar form. In this study, we look at how the amplitude and phase are affected by linear low-pass filtering. The impact of filtering on amplitude is well understood, but that on phase has not been studied previously. Here, we demonstrate that a certain class of filters only affect the amplitude of the spherical harmonic spectrum and not the phase, but the others affect both the amplitude and phase. Further, we also demonstrate that the filtered phase helps in ascertaining the efficacy of decorrelation filters used in the grace community. 相似文献