首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   13篇
  国内免费   5篇
测绘学   2篇
大气科学   14篇
地球物理   94篇
地质学   119篇
海洋学   7篇
天文学   42篇
自然地理   19篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   14篇
  2017年   13篇
  2016年   15篇
  2015年   12篇
  2014年   6篇
  2013年   16篇
  2012年   9篇
  2011年   19篇
  2010年   24篇
  2009年   12篇
  2008年   15篇
  2007年   17篇
  2006年   9篇
  2005年   8篇
  2004年   13篇
  2003年   6篇
  2002年   10篇
  2001年   10篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1940年   1篇
  1925年   1篇
排序方式: 共有297条查询结果,搜索用时 750 毫秒
51.
ABSTRACT

There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this paper proposes a method of deriving spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte Carlo approach allows for the generation of a wide range of different spatio-temporal distributions of an extreme precipitation event that can be tested with a rainfall–runoff model that generates a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the physically plausible spatio-temporal distributions that lead to the highest peak discharges are identified and can eventually be used for further investigations.
Editor A. Castellarin; Associate editor E. Volpi  相似文献   
52.
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980?C2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50?C80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.  相似文献   
53.
Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.  相似文献   
54.
The natural cotton fiber was used to synthesize an anion exchange, containing ZrO2 film on its surface, NCFZC (natural cotton fiber/ZrO2 composite). This anion exchanger was produced by the reaction of the zirconium oxychloride and hydroxyl groups on surface of the natural cotton fiber. The material was used for Cr(VI) ions adsorption studies. Adsorption equilibrium time and optimum pH for Cr(VI) adsorption were found to be 6 h and 4.0, respectively. The Langmuir and Temkin isotherms were used to models adsorption equilibrium data. The adsorption capacity of NCFZC was found to be 1.33 mmol/g. Kinetic studies showed that the rate of adsorption of Cr(VI) on NCFZC obeyed a pseudo‐second‐order kinetic model.  相似文献   
55.
Mass wasting at continental margins on a global scale during the Middle Ordovician has recently been related to high meteorite influx. Although a high meteorite influx during the Ordovician should not be neglected, we challenge the idea that mass wasting was mainly produced by meteorite impacts over a period of almost 10 Ma. Having strong arguments against the impact-related hypothesis, we propose an alternative explanation, which is based on a re-evaluation of the mass wasting sites, considering their plate-tectonic distribution and the global sea level curve. A striking and important feature is the distribution of most of the mass wasting sites along continental margins characterised by periods of magmatism, terrane accretion and continental or back-arc rifting, respectively, related to subduction of oceanic lithosphere. Such processes are commonly connected with seismic activity causing earthquakes, which can cause downslope movement of sediment and rock. Considering all that, it seems more likely that most of this mass wasting was triggered by earthquakes related to plate-tectonic processes, which caused destabilisation of continental margins resulting in megabreccias and debris flows. Moreover, the period of mass wasting coincides with sea level drops during global sea level lowstand. In some cases, sea level drops can release pore-water overpressure reducing sediment strength and hence promoting instability of sediment at continental margins. Reduced pore-water overpressure can also destabilise gas hydrate-bearing sediment, causing slope failure, and thus resulting in submarine mass wasting. Overall, the global mass wasting during the Middle Ordovician does not need meteoritic trigger.  相似文献   
56.
The thermal stability of sideronatrite, ideally Na2Fe3+(SO4)2(OH)·3(H2O), and its decomposition products were investigated by combining thermogravimetric and differential thermal analysis, in situ high-temperature X-ray powder diffraction (HT-XRPD) and Fourier transform infrared spectroscopy (HT-FTIR). The data show that for increasing temperature there are four main dehydration/transformation steps in sideronatrite: (a) between 30 and 40 °C sideronatrite transforms into metasideronatrite after the loss of two water molecules; both XRD and FTIR suggest that this transformation occurs via minor adjustments in the building block. (b) between 120 and 300 °C metasideronatrite transforms into metasideronatrite II, a still poorly characterized phase with possible orthorhombic symmetry, consequently to the loss of an additional water molecule; X-ray diffraction data suggest that metasideronatrite disappears from the assemblage above 175 °C. (c) between 315 and 415 °C metasideronatrite II transforms into the anhydrous Na3Fe(SO4)3 compound. This step occurs via the loss of hydroxyl groups that involves the breakdown of the [Fe3+(SO4)2(OH)] 2? chains and the formation of an intermediate transient amorphous phase precursor of Na3Fe(SO4)3. (d) for T > 500 °C, the Na3Fe(SO4)3 compound is replaced by the Na-sulfate thenardite, Na2SO4, plus Fe-oxides, according to the Na3Fe3+(SO4)3 → 3/2 Na2(SO4) + 1/2 Fe2O3 + SOx reaction products. The Na–Fe sulfate disappears around 540 °C. For higher temperatures, the Na-sulfates decomposes and only hematite survives in the final product. The understanding of the thermal behavior of minerals such as sideronatrite and related sulfates is important both from an environmental point of view, due to the presence of these phases in evaporitic deposits, soils and sediments including extraterrestrial occurrences, and from the technological point of view, due to the use of these materials in many industrial applications.  相似文献   
57.
Strongly-deformed marbles may be easily confused with linear and elongated carbonatite intrusions. Both rocks may present similar texture and foliation to the host rock, or even cross cutting field relationships, which could be interpreted either as igneous or high-grade metamorphosed marble. Diagnostic criteria are even more complex when there is evidence of melting of the metasedimentary carbonate rock, such as has been described in the Himalayas and in the Eastern Ghats, India.In the Alto Moxotó Terrane, a high-grade gneissic domain of the Borborema Province, Northeastern Brazil, there are metacarbonates associated with banded gneisses and different metaplutonic rocks. Field evidence indicates the absence of other metasedimentary rocks associated with these marbles, thus suggesting that these carbonates were separated from other siliciclastic metasedimentary rocks. The presence of marble also suggests that it may represent the initial stage of a crustal carbon recycling into the mantle. These marbles present many field similarities to carbonatites (e.g., fluid-flow structure) and, together with metagranites and metamafic intrusions, may represent a major collisional tectonic suture.A detailed study of the carbon, oxygen and strontium isotopic composition of these marbles is presented. This study aims to identify the origin of the different isotopic components. It is argued that these rocks were subjected to temperature and pressure conditions that were sufficiently high to have melted them. The isotopic data presented here support this interpretation and indicate the mixing of two components: (i) one characterized by radiogenic Sr isotopes and mantle-like carbon isotopes, which is associated with the gneissic and mafic rocks, and (ii) another characterized by low 87Sr/86Sr ratios and highly positive δ13C values. Available geochemical data for the upper Paleoproterozoic indicate that the 87Sr/86Sr ratio of ocean water, varying between 0.7050 (2.25 ± 0.25 Ga) and 0.7047 (1.91 Ga), falls within the lower range of the samples from Itatuba and thus reinforces the interpretation that these marbles are sedimentary-derived and were partially contaminated by interaction with the host gneissic and mafic rocks.  相似文献   
58.
The impact of inclined faults on the hydrothermal field is assessed by adding simplified structural settings to synthetic models. This study is innovative in carrying out numerical simulations because it integrates the real 3-D nature of flow influenced by a fault in a porous medium, thereby providing a useful tool for complex geothermal modelling. The 3-D simulations for the coupled fluid flow and heat transport processes are based on the finite element method. In the model, one geological layer is dissected by a dipping fault. Sensitivity analyses are conducted to quantify the effects of the fault’s transmissivity on the fluid flow and thermal field. Different fault models are compared with a model where no fault is present to evaluate the effect of varying fault transmissivity. The results show that faults have a significant impact on the hydrothermal field. Varying either the fault zone width or the fault permeability will result in relevant differences in the pressure, velocity and temperature field. A linear relationship between fault zone width and fluid velocity is found, indicating that velocities increase with decreasing widths. The faults act as preferential pathways for advective heat transport in case of highly transmissive faults, whereas almost no fluid may be transported through poorly transmissive faults.  相似文献   
59.
60.
During geothermal power production using a borehole doublet consisting of a production and injection well, the reservoir conditions such as permeability k, porosity φ and Skempton coefficient B at the geothermal research site Gross Schoenebeck/Germany will change. Besides a temperature decrease at the injection well and a change of the chemical equilibrium, also the pore pressure p p will vary in a range of approximately 44 MPa ± 10 MPa in our reservoir at ?3850 to ?4258 m depth. This leads to a poroelastic response of the reservoir rocks depending on effective pressure p eff (difference between mean stress and pore pressure), resulting in a change in permeability k, porosity φ and the poroelastic parameter Skempton coefficient B. Hence, we investigated the effective pressure dependency of Flechtinger sandstone, an outcropping equivalent of the reservoir rock via laboratory experiments. The permeability decreased by 21% at an effective pressure range from 3 to 30 MPa, the porosity decreased by 11% (p eff = 6 to 65 MPa) and the Skempton coefficient decreased by 24% (p eff = 4 to 25 MPa). We will show which mechanisms lead to the change of the mentioned hydraulic and poroelastic parameters and the influence of these changes on the productivity of the reservoir. The most significant changes occur at low effective pressures until 15 to 20 MPa. For our in situ reservoir conditions p eff = 43 MPa a change of 10 MPa effective pressure will result in a change in matrix permeability of less than 4% and in matrix porosity of less than 2%. Besides natural fracture systems, fault zones and induced hydraulic fractures, the rock matrix its only one part of geothermal systems. All components can be influenced by pressure, temperature and chemical reactions. Therefore, the determined small poroelastic response of rock matrix does not significantly influence the sustainability of the geothermal reservoir.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号