首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   10篇
  国内免费   5篇
测绘学   2篇
大气科学   11篇
地球物理   77篇
地质学   86篇
海洋学   3篇
天文学   24篇
自然地理   14篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   11篇
  2016年   8篇
  2015年   9篇
  2014年   6篇
  2013年   13篇
  2012年   8篇
  2011年   16篇
  2010年   16篇
  2009年   8篇
  2008年   9篇
  2007年   14篇
  2006年   8篇
  2005年   1篇
  2004年   9篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1940年   1篇
  1925年   1篇
排序方式: 共有217条查询结果,搜索用时 0 毫秒
61.
62.
63.
The Cayconi Formation of the Crucero Basin, Puno Department, southeastern Peru, has been described as a 800–1000 m sequence of Oligocene and Miocene fanglomerate and lacustrine sedimentary rocks, interlayered with mafic and silicic volcanic rocks, and unconformably overlying Paleozoic and Cretaceous successions. On the basis of new field and petrological investigations, key aspects of the stratigraphic relationships of the rocks comprising this formation, and hence the viability of this lithostratigraphic name, are questioned. Thus, several sedimentary units previously assigned to the Cayconi Formation are reinterpreted as Cretaceous or older. We further argue that the formational terminology fails to accomodate the great variety of volcanic rocks, which are, moreover, disposed in isolated eruptive fields. We therefore propose establishment of the Crucero Supergroup as a broad, yet flexible framework for lithostratigraphic subdivision of the Tertiary sequences of the Cordillera Oriental of southeastern Peru. This new nomenclature accomodates the voluminous two-mica ash flow tuffs (Macusani Volcanics) and associated rocks of the Quenamari Meseta, a succession excluded from the existing lithostratigraphic classification scheme. It also permits distinction between the petrogenetically-contrasted upper Oligocene — Lower Miocene and Middle Miocene — Upper Miocene volcanic suites, which dominate, respectively, the Picotani and Quenamari Groups comprising the proposed Crucero Supergroup. Finally, the economically important granitic/rhyolitic intrusive centers cogenetic with the volcanic rocks are readily assignable to intrusive lithodemes in each group.  相似文献   
64.
65.
Results for minor stratospheric constituents using a 2D model with self-consistent transport parameters are reported. The meridional circulation is obtained from the output of the MIT-GIT 3D stratospheric model (Cunnold et al., 1975). Consistent data from the same model are used to evaluate the diffusive tensors following the formalism of Holton (1981) and Tung (1982). Chemical damping is consequently taken into account, so that the entire model is built in a selfconsistent manner at the least with the 3D model and no ad hoc assumptions are made with respect of transport parameters. This version of the model represents a major improvement on previous work (Pitari and Visconti, 1984), which used to much too simple chemistry. Results are compared whenever possible with available experimental data, with particular emphasis on chemical reacting species. This comparison shows in general an agreement which is qualitatively similar to the one obtained from classical Eulerian models where transport parameters are often tuned to long-lived tracers without any sound physical basis.  相似文献   
66.
The overpresence of fine sediment and fine sediment infiltration (FSI) in the aquatic environment of rivers are of increasing importance due to their limiting effects on habitat quality and use. The habitats of both macroinvertebrates and fish, especially spawning sites, can be negatively affected. More recently, hydropeaking has been mentioned as a driving factor in fine sediment dynamics and FSI in gravel-bed rivers. The primary aim of the present study was to quantify FSI in the vertical stratigraphy of alpine rivers with hydropeaking flow regimes in order to identify possible differences in FSI between the permanently wetted area (during base and peak flows) and the so-called dewatering areas, which are only inundated during peak flows. Moreover, we assessed whether the discharge ratio between base and peak flow is able to explain the magnitude of FSI. To address these aims, freeze-core samples were taken in eight different alpine river catchments. The results showed significant differences in the vertical stratification of FSI between the permanently wetted area during base flow and the dewatering sites. Surface clogging occurred only in the dewatering areas, with decreasing percentages of fine sediments associated with increasing core depths. In contrast, permanently wetted areas contained little or no fine sediment concentrations on the surface of the river bed. Furthermore, no statistical relationship was observed between the magnitude of hydropeaking and the sampled FSI rate. A repeated survey of FSI in the gravel matrix revealed the importance of de-clogging caused by flooding and the importance of FSI in the aquatic environment, especially in the initial stages of riparian vegetation establishment. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
67.
68.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
69.
70.
Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号