The runoff and sediment load of the Loess Plateau have changed significantly due to the implementation of soil and water conservation measures since the 1970s. However, the effects of soil and water conservation measures on hydrological extremes have rarely been considered. In this study, we investigated the variations in hydrological extremes and flood processes during different periods in the Yanhe River Basin (a tributary of the Loess Plateau) based on the daily mean runoff and 117 flood event data from 1956 to 2013. The study periods were divided into reference period (1956–1969), engineering measures period (1970–1995), and biological control measures period (1996–2013) according to the change points of the annual streamflow and the actual human activity in the basin. The results of the hydrological high extremes (HF1max, HF3max, HF7max) exhibit a decreasing trend (P?<?0.01), whereas the hydrological low extremes (HBF1min, HBF3min, HBF7min) show an increasing trend during 1956–2013. Compared with the hydrological extremes during the reference period, the hydrological high extremes increased during the engineering measures period at low (<?15%) and high frequency (>?80%), whereas decreased during the biological control measures period at almost all frequencies. The hydrological low extremes generally increased during both the engineering measures and biological control measures periods, particularly during the latter period. At the flood event scale, most flood event indices in connection with the runoff and sediment during the engineering measures period were significantly higher than those during the biological control measures period. The above results indicate that the ability to withstand hydrological extremes for the biological control measures was greater than that for the engineering measures in the studied basin. This work reveals the effects of different soil and water conservation measures on hydrological extremes in a typical basin of the Loess Plateau and hence can provide a useful reference for regional soil erosion control and disaster prevention policy-making.
In southwest Niger, the Continental Terminal water table displays a natural hollow shape about 10 m in depth over an area of 4000 km2. A 10-year survey of this hollow aquifer has shown that current recharge is above . The water table has risen continuously since the 1950–1960s as a result of land clearance. This shows a disequilibrium in the aquifer balance. The long-term recharge rate is estimated by radioisotopes to be around . This figure fits with the only possible origin of the piezometric depression, i.e. evapotranspiration losses in its centre. To cite this article: G. Favreau et al., C. R. Geoscience 334 (2002) 395–401.相似文献
A traditional interpolation algorithm with the linear interpolation method (LIM) using a fixed number of reference stations is widely used in network RTK to obtain the ionospheric delays for the users. In low-latitude regions, where the ionosphere is relatively active, however, large interpolation errors exist, especially for satellites at low elevation angles. Considering the characteristics of “coinciding ionospheric pierce points (CIPPs)” with a similar nature of ionospheric delays, an improved interpolation algorithm is proposed. In this algorithm, all stations with CIPPs are used to establish the interpolation model; thus, more precise interpolation model is achieved. To validate the performance of the proposed algorithm, data from some reference stations in Guangdong Province of China were used, and the results are compared with those with the traditional interpolation algorithm. Numerical analysis shows that the interpolation accuracy of the proposed algorithm increases by 10–30% compared with the traditional one. Since the number of reference stations is flexible, the proposed algorithm can also balance the model accuracy with the computation burdens. In addition, the proposed algorithm is less affected by the selection of master reference station. In terms of network RTK on-the-fly positioning, the time-to-first-fix is reduced when replacing the traditional interpolation algorithm with the proposed one. 相似文献