首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   5篇
地球物理   30篇
地质学   35篇
海洋学   4篇
天文学   12篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   8篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   3篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
61.
Selection of effective groundwater remediation scenarios is a complex issue that requires understanding of contaminants’ transport processes. The effectiveness of cleanup measures may be verified by fate and transport numerical modeling. The goal of this work was to present the usefulness of fate and transport modeling for planning, verification and fulfillment of effective groundwater remediation methods. Selection methodology was developed, which is based on results of numerical flow and transport modeling. A field site located in south-east Poland was selected as a case study, in which groundwater contamination of trichloroethene and tetrachloroethene was detected. The results indicated that “pump and treat” was the most effective among the studied remediation methods, followed by permeable reactive barrier and in situ chemical oxidation. Natural attenuation-based remediation was demonstrated to be the least suitable, as it requires the longest time to reach predefined remediation goals, principally due to low sorption capacity and unfavorable hydrogeochemical conditions for biodegradation. Fate and transport numerical modeling allowed simulating different remediation strategies, and thus the decision-making process was facilitated.  相似文献   
62.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   
63.
64.
A computational model system is proposed for the prediction of sea dike breaching initiated from the seaward side by breaking wave impact with the focus on the application of the model system for the estimation failure probability of the defence structure. The described model system is built using a number of existing models for the calculation of grass, clay, and sand erosion. The parameters identified as those having the most significant influence on the estimation of the failure have been described stochastically. Monte Carlo simulations to account for uncertainties of the relevant input parameters and the model itself have been performed and the probabilities of the breach initiation and of the full dike breaching have been calculated. This will form the basis to assess the coastal flood risk due to dike breaching.  相似文献   
65.
66.
The timing of Svalbard's assembly in relation to the mid‐Paleozoic Caledonian collision between Baltica and Laurentia remains contentious. The Svalbard archipelago consists of three basement provinces bounded by N–S‐trending strike–slip faults whose displacement histories are poorly understood. Here, we report microstructural and mineral chemistry data integrated with 40Ar/39Ar muscovite geochronology from the sinistral Vimsodden‐Kosibapasset Shear Zone (VKSZ, southwest Svalbard) and explore its relationship to adjacent structures and regional deformation within the circum‐Arctic. Our results indicate that strike–slip displacement along the VKSZ occurred in late Silurian–Early Devonian and was contemporaneous with the beginning of the main phase of continental collision in Greenland and Scandinavia and the onset of syn‐orogenic sedimentation in Silurian–Devonian fault‐controlled basins in northern Svalbard. These new‐age constraints highlight possible links between escape tectonics in the Caledonian orogen and mid‐Paleozoic terrane transfer across the northern margin of Laurentia.  相似文献   
67.
The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR–GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0–2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal \(-44.9, -35.0\), and \(-22.4\) mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear and angular velocities.  相似文献   
68.
The study presents a theoretical framework for estimating the radar-rainfall error spatial correlation (ESC) using data from relatively dense rain gauge networks. The error is defined as the difference between the radar estimate and the corresponding true areal rainfall. The method is analogous to the error variance separation that corrects the error variance of a radar-rainfall product for gauge representativeness errors. The study demonstrates the necessity to consider the area–point uncertainties while estimating the spatial correlation structure in the radar-rainfall errors. To validate the method, the authors conduct a Monte Carlo simulation experiment with synthetic fields with known error spatial correlation structure. These tests reveal that the proposed method, which accounts for the area–point distortions in the estimation of radar-rainfall ESC, performs very effectively. The authors then apply the method to estimate the ESC of the National Weather Service’s standard hourly radar-rainfall products, known as digital precipitation arrays (DPA). Data from the Oklahoma Micronet rain gauge network (with the grid step of about 5 km) are used as the ground reference for the DPAs. This application shows that the radar-rainfall errors are spatially correlated with a correlation distance of about 20 km. The results also demonstrate that the spatial correlations of radar–gauge differences are considerably underestimated, especially at small distances, as the area–point uncertainties are ignored.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号