首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39766篇
  免费   789篇
  国内免费   244篇
测绘学   767篇
大气科学   2711篇
地球物理   7846篇
地质学   14416篇
海洋学   3616篇
天文学   8906篇
综合类   86篇
自然地理   2451篇
  2022年   258篇
  2021年   450篇
  2020年   514篇
  2019年   585篇
  2018年   1040篇
  2017年   1043篇
  2016年   1115篇
  2015年   619篇
  2014年   1060篇
  2013年   1921篇
  2012年   1223篇
  2011年   1680篇
  2010年   1476篇
  2009年   1839篇
  2008年   1683篇
  2007年   1726篇
  2006年   1606篇
  2005年   1094篇
  2004年   1114篇
  2003年   1156篇
  2002年   1031篇
  2001年   901篇
  2000年   822篇
  1999年   739篇
  1998年   735篇
  1997年   739篇
  1996年   613篇
  1995年   595篇
  1994年   507篇
  1993年   468篇
  1992年   420篇
  1991年   433篇
  1990年   442篇
  1989年   401篇
  1988年   384篇
  1987年   406篇
  1986年   423篇
  1985年   523篇
  1984年   555篇
  1983年   553篇
  1982年   509篇
  1981年   466篇
  1980年   444篇
  1979年   418篇
  1978年   386篇
  1977年   394篇
  1976年   350篇
  1975年   358篇
  1974年   351篇
  1973年   372篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
The instantaneous structure of planetary exospheres is determined by the time history of energy dissipation, chemical, and transport processes operative during a prior time interval set by intrinsic atmospheric time scales. The complex combination of diurnal and magnetospheric activity modulations imposed on the Earth's upper atmosphere no doubt produce an equally complex response, especially in hydrogen, which escapes continuously at exospheric temperatures. Vidal-Madjar and Thomas (1978) have discussed some of the persistent large scale structure which is evident in satellite ultraviolet observations of hydrogen, noting in particular a depletion at high latitudes which is further discussed by Thomas and Vidal-Madjar (1978). The latter authors discussed various causes of the H density depletion, including local neutral temperature enhancements and enhanced escape rates due to polar wind H+ plasma flow or high latitude ion heating followed by charge exchange. We have reexamined the enhancement of neutral escape by plasma effects including the recently observed phenomenon of low altitude transverse ion acceleration. We find that, while significant fluxes of neutral H should be produced by this phenomenon in the auroral zone, this process is probably insufficient to account for the observed polar depletion. Instead, the recent exospheric temperature measurements from the Dynamics Explorer-2 spacecraft suggest that neutral heating in and near the high latitude cusp may be the major contributor to depleted atomic hydrogen densities at high latitudes.  相似文献   
132.
The solar differential rotation: Present status of observations   总被引:1,自引:0,他引:1  
E. H. Schröter 《Solar physics》1985,100(1-2):141-169
The present status of observations regarding the solar differential rotation is reviewed from contributions published in the last two decades. The paper does not deal with the theory; it mentions theoretical aspects only where they are needed to guide and to understand observational efforts and results.Mitteilungen aus dem Kiepenheuer-Institut Nr. 250.  相似文献   
133.
The study of the evolution of planetary systems, primarily of the Solar System, is one of the basic problems of celestial mechanics. The stability of motion of giant planets on cosmogonic time scales was established by numerical and analytical methods, but the question about the evolution of orbits of terrestrial planets and arbitrary solar-type planetary systems remained open. This work initiates a series of papers allowing one to advance in solving the problem of the evolution of the solar-type planetary systems on cosmogonic time scales by using powerful analytical tools. In the first paper of this series, we choose the optimum reference system and obtain the Poisson series expansion of the Hamiltonian of the problem in all Keplerian elements. We propose to use the integral representation of the corresponding coefficients or the Poisson processor means instead of conventionally addressing any possible special functions. This approach extremely simplifies the algorithm. The next paper of this series deals with the calculation of the expansion coefficients.  相似文献   
134.
135.
The reflectance coefficient of the regolith layer of celestial bodies has been studied in relation to the physical properties of regolith particles (size, refractive index, and packing density) on the basis of an accurate numerical radiative-transfer algorithm for a semi-infinite flat layer. Using the geometric-optics approximation, we have found that a shape mixture of randomly oriented spheroids can successfully model the single-scattering phase function of independent soil grains. In order to take into account the effect of packing density in a regolith layer, the concept of the so-called static structure factor was used. The main effect of increasing packing density is to suppress the forward-scattering peak of the phase function and to increase the albedo of the reflecting surface. We also investigated the influence of fine dust on the reflected light. An addition of small particles not only increases the surface albedo, but also changes the brightness profile and enhances the backscattering. Although the problem of unique solution, which is inherent in the retrieval of the properties of a medium from the measurements of the intensity of light scattered by this media, cannot be removed in the proposed model, the procedure used here, in contrast to widely used approximations, allows us to fit observational data with a set of real characteristics of the regolith. Semiempirical approaches are able to fit the measurements well with a small number of free parameters, but they do not explicitly contain crucial physical characteristics of the regolith such as grain sizes or the refractive index. We compared the numerical solution of the radiative-transfer equation with the Hapke approximation, which is most often used by investigators. The errors introduced by the Hapke model are small only for near-isotropic scattering by isolated particles. However, independent regolith grains are known to scatter light mainly in the forward direction.  相似文献   
136.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   
137.
We outline the results of a two-dimensional (2D) fit to the light distribution of early-type galaxies belonging to a complete volume-limited sample and discuss briefly the significant correlations among the structural parameters. In particular we reconfirm that the lack of structural homology is probably a characteristic of hot stellar systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
138.
J.M. Ajello  G.E. Thomas 《Icarus》1985,61(1):163-170
Our current understanding of the spatial and temporal distribution of interplan etary neutral hydrogen is currently limited to a comparison of Lyman-σ photometric data with predictions of the solar backscattered radiation using theoretical models. In this paper, how the uncertainties in current model calculations could be reduced through the future use of polarization measurements made from interplanetary spacecraft is investigated. In particular, inquiry into how a mapping of the degree of linear polarization made from a spacecraft at various locations in the Solar System can improve knowledge of the interstellar wind parameters, number density, temperature, and velocity, is made. A polarization measurement can, in principle, be made with very high precision. In this regard, being a relative quantity, a polarization measurement can be made independent of instrumental calibration and long-term sensitivity degredation. Furthermore, the sky distribution of both intensity and polarization has been calculated using a variety of models for the neutral hydrogen. It is found that the polarization distribution over the sky is quite different from that of the intensity distribution. It is also showed that the maximum degree of polarization of the Laymam-σ line increases with heliocentric distance of the spacecraft, varying from 0 up to ~ 18% at 20 AU.  相似文献   
139.
The quadrupole mass spectrometer flown by the Air Force Geophysics Laboratory on STS-4 in 1982 detected large intensities of several ions, primarily O+, H2O+ and H3O+, with energies less than 1.5 e V with respect to the Shuttle Orbiter. Ion-molecule reactions and non-reactive scattering between the outgassing neutral flux from the Orbiter surfaces and the ambient ionic species are identified as the primary source of these low energy ions.  相似文献   
140.
About a dozen physical mechanisms and models aspire to explain the negative polarization of light scattered by atmosphereless celestial bodies. This is too large a number for the reliable interpretation of observational data. Through a comparative analysis of the models, our main goal is to answer the question: Does any one model have an advantage over the others? Our analysis is based on new laboratory polarimetric and photometric data as well as on theoretical results. We show that the widely used models due to Hopfield and Wolff cannot realistically explain the phase-angle dependence of the degree of polarization observed at small phase angles. The so-called interference or coherent backscattering mechanism is the most promising model. Models based on that mechanism use well-defined physical parameters to explain both negative polarization and the opposition effect. They are supported by laboratory experiments, particularly those showing enhancement of negative polarization with decreasing particle size down to the wavelength of light. According to the interference mechanism, pronounced negative branches of polarization, like those of C-class asteroids, may indicate a high degree of optical inhomogeneity of light-scattering surfaces at small scales. The mechanism also seems appropriate for treating the negative polarization and opposition effects of cometary dust comae, planetary rings, and the zodiacal light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号