首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   884篇
  免费   47篇
  国内免费   6篇
测绘学   20篇
大气科学   104篇
地球物理   218篇
地质学   311篇
海洋学   56篇
天文学   128篇
自然地理   100篇
  2023年   2篇
  2021年   14篇
  2020年   13篇
  2019年   7篇
  2018年   23篇
  2017年   32篇
  2016年   33篇
  2015年   27篇
  2014年   27篇
  2013年   52篇
  2012年   35篇
  2011年   47篇
  2010年   41篇
  2009年   42篇
  2008年   51篇
  2007年   33篇
  2006年   41篇
  2005年   34篇
  2004年   28篇
  2003年   35篇
  2002年   31篇
  2001年   23篇
  2000年   22篇
  1999年   14篇
  1998年   14篇
  1997年   12篇
  1996年   20篇
  1995年   22篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   13篇
  1987年   7篇
  1986年   5篇
  1985年   13篇
  1984年   4篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1974年   7篇
  1971年   2篇
  1915年   5篇
排序方式: 共有937条查询结果,搜索用时 0 毫秒
131.
The Bencubbin meteorite is a polymict breccia consisting of a host fraction of ~60% metal and ~40% ferromagnesian silicates and a selection of carbonaceous, ordinary and ‘enstatite’ chondritic clasts. Concentrations of 27 elements were determined by neutron activation in replicate samples of the host silicates and the ordinary and carbonaceous chondritic clasts; 12 elements were determined in the host metal. Compositional data for the ordinary chondrite clast indicate a classification of LL4 ± 1. Refractory element data for the carbonaceous chondrite clast indicate that it belongs to the CI-CM-CO clan; its volatile element abundances are intermediate between those of CM and CO chondrites. Abundances of nonvolatile elements in the silicate host are similar to those in the carbonaceous chondrite clast and in CM chondrites; the rare earths are unfractionated. We conclude that it is not achondritic as previously designated, but chondritic and that it is probably related to the CI-CM-CO clan; its volatile abundances are lower than those in CO chondrites. Oxygen isotope data are consistent with these classifications. Host metal in Bencubbin and in the closely related Weatherford meteorite has low abundances of moderately volatile siderophiles; among iron meteorite groups its nearest relative is group IIIF.We suggest that Bencubbin and Weatherford formed as a result of an impact event on a carbonaceous chondrite regolith. The impact generated an ‘instant magma’ that trapped and surrounded regolithic clasts to form the polymict breccia. The parent of this ‘magma’ was probably the regolith itself, perhaps mainly consisting of the so-called ‘enstatite’ chondrite materials. Accretion of such a variety of materials to a small parent body was probably only possible in the asteroid belt.  相似文献   
132.
Kinetic isotope effects related to the breaking of chemical bonds drive sulfur isotope fractionation during dissimilatory sulfate reduction (DSR), whereas oxygen isotope fractionation during DSR is dominated by exchange between intercellular sulfur intermediates and water. We use a simplified biochemical model for DSR to explore how a kinetic oxygen isotope effect may be expressed. We then explore these relationships in light of evolving sulfur and oxygen isotope compositions (δ34SSO4 and δ18OSO4) during batch culture growth of twelve strains of sulfate-reducing bacteria. Cultured under conditions to optimize growth and with identical δ18OH2O and initial δ18OSO4, all strains show 34S enrichment, whereas only six strains show significant 18O enrichment. The remaining six show no (or minimal) change in δ18OSO4 over the growth of the bacteria. We use these experimental and theoretical results to address three questions: (i) which sulfur intermediates exchange oxygen isotopes with water, (ii) what is the kinetic oxygen isotope effect related to the reduction of adenosine phosphosulfate (APS) to sulfite (SO32−), (iii) does a kinetic oxygen isotope effect impact the apparent oxygen isotope equilibrium values? We conclude that oxygen isotope exchange between water and a sulfur intermediate likely occurs downstream of APS and that our data constrain the kinetic oxygen isotope fractionation for the reduction of APS to sulfite to be smaller than 4‰. This small oxygen isotope effect impacts the apparent oxygen isotope equilibrium as controlled by the extent to which APS reduction is rate-limiting.  相似文献   
133.
134.
Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year?1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year?1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.  相似文献   
135.
The stable isotope composition of strontium (expressed as δ88/86Sr) may provide important constraints on the global exogenic strontium cycle. Here, we present δ88/86Sr values and 87Sr/86Sr ratios for granitoid rocks, a 150 yr soil chronosequence formed from these rocks, surface waters and plants in a small glaciated watershed in the central Swiss Alps. Incipient chemical weathering in this young system, whether of inorganic or biological origin, has no resolvable effect on the 87Sr/86Sr ratios and δ88/86Sr values of bulk soils, which remain indistinguishable from bedrock in terms of Sr isotopic composition. Although due in part to the chemical heterogeneity of the forefield, the lack of a resolvable difference between soil and bedrock isotopic composition indicates that these soils have thus far witnessed minimal net loss of Sr; a low degree of chemical weathering is also implied by bulk soil chemistry. The isotopic composition of Sr in streamwater is more radiogenic than median soil, reflecting the preferential weathering of biotite in the catchment; streamwater δ88/86Sr values, however, are indistinguishable from bulk soil δ88/86Sr values, implying that no resolvable fractionation of Sr isotopes takes place during release to the weathering flux in the Damma forefield. Analyses of plant tissue reveal that plants (Rhododendron and Vaccinium) preferentially assimilate the lighter isotopes of Sr such that their δ88/86Sr values are significantly lower than those of the soils in which they grow. Additionally, δ88/86Sr values of foliar and floral tissues are lower than those of roots, contrary to observations for Ca, for which Sr is often used as an analogue in weathering studies. We suggest that processes that discriminate against Sr in favour of Ca, due to the different nutritional requirement of plants for these two elements, are responsible for the observed contrast.  相似文献   
136.
We report the results of the first laser beacon experiment at the astronomical site of La Palma (Canary Islands). A continuous wave low‐power laser (a few hundred mW) system has been set up. The laser, tuned on the sodium D2 line at 589 nm, is launched close to the zenith angle. The emission of the mesospheric sodium layer is observed from a telescope located 160 m away from the laser. The layer is therefore resolved in altitude and the different features of its dynamics are investigated.  相似文献   
137.
In the Panxi region of the Late Permian (~ 260 Ma) Emeishan large igneous province (ELIP) there is a bimodal assemblage of mafic and felsic plutonic rocks. Most Emeishan granitic rocks were derived by differentiation of basaltic magmas (i.e. mantle-derived) or by mixing between crustal melts and primary basaltic magmas (i.e. hybrid). The Yingpanliangzi granitic pluton within the city of Panzhihua intrudes Sinian (~ 600 Ma) marbles and is unlike the mantle-derived or hybrid granitic rocks. The SHRIMP zircon U–Pb ages of the Yingpanliangzi pluton range from 259 ± 8 Ma to 882 ± 22 Ma. Younger ages are found on the zircon rims whereas older ages are found within the cores. Field relationships and petrography indicate that the Yingpanliangzi pluton must be < 600 Ma, therefore the older zircons are interpreted to represent the protolith age whereas the younger analyses represent zircon re-crystallization during emplacement. The Yingpanliangzi granites are metaluminous and have negative Ta–NbPM anomalies, low εNd(260 Ma) values (? 3.9 to ? 4.4), and high ISr (0.71074 to 0.71507) consistent with a crustal origin. The recognition of a crustally-derived pluton along with mantle-derived and mantle–crust hybrid plutons within the Panxi region of the ELIP is evidence for a complete spectrum of sources. As a consequence, the types of Panxi granitoids can be distinguished according to their ASI, Eu/Eu*, εNd(T), εHf(T), TZr(°C) and Nb–TaPM values. The diverse granitic magmatism during the evolution of the ELIP from ~ 260 Ma to ~ 252 Ma demonstrates the complexity of crustal growth associated with LIPs.  相似文献   
138.
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. A power-law fit to ring diameters (Dring) and rim-crest diameters (Dr) of peak-ring basins on the Moon [Dring = 0.14 ± 0.10(Dr)1.21±0.13] reveals a trend that is very similar to a power-law fit to peak-ring basin diameters on Mercury [Dring = 0.25 ± 0.14(Drim)1.13±0.10] [Baker, D.M.H. et al. [2011]. Planet. Space Sci., in press]. Plots of ring/rim-crest ratios versus rim-crest diameters for peak-ring basins and protobasins on the Moon also reveal a continuous, nonlinear trend that is similar to trends observed for Mercury and Venus and suggest that protobasins and peak-ring basins are parts of a continuum of basin morphologies. The surface density of peak-ring basins on the Moon (4.5 × 10−7 per km2) is a factor of two less than Mercury (9.9 × 10−7 per km2), which may be a function of their widely different mean impact velocities (19.4 km/s and 42.5 km/s, respectively) and differences in peak-ring basin onset diameters. New calculations of the onset diameter for peak-ring basins on the Moon and the terrestrial planets re-affirm previous analyses that the Moon has the largest onset diameter for peak-ring basins in the inner Solar System. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.  相似文献   
139.
The past decade has seen what could reasonably be called an explosion in the number of food-related crises in China. Food safety issues represent a national crisis threatening the physical and psychological health of Chinese citizens, despite the repeated adoption of stringent food safety laws and regulations. This project, based on a stratified random sample of 337 households in Nanjing, assesses perceptions related to different food safety concerns and issues among urban residents and explores differences in perceptions across social strata as defined by socioeconomic and demographic variables using principal component analysis and standard statistical tests.  相似文献   
140.
This study examines spatially referenced perceived landscape values and climate change risks collected through public participation geographic information systems for potential use in climate change planning. Using survey data from the Southern Fleurieu Peninsula, South Australia, we present a method for identifying perceived landscape values and climate change risks to describe and quantify their spatial associations. Two spatial data models??vector and raster??and two analytical methods??Jaccard coefficients and spatial cross-correlations were used to describe the spatial associations. Results indicate that perceptions of climate change risk are driven, in part, by the values people assign or hold for places on the landscape. Biodiversity and intrinsic landscape values have strong spatial association with biodiversity loss risk while recreation values have strong spatial association with riparian flooding, sea-level rise and wave action risks. Other landscape values show weak to no spatial association with perceived climate change risks. The methodology described in this research provides a mechanism for government agencies to develop place-based adaptation strategies based on these associations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号