首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   958篇
  免费   34篇
  国内免费   19篇
测绘学   19篇
大气科学   55篇
地球物理   177篇
地质学   371篇
海洋学   87篇
天文学   194篇
综合类   2篇
自然地理   106篇
  2022年   4篇
  2021年   4篇
  2020年   11篇
  2019年   8篇
  2018年   25篇
  2017年   17篇
  2016年   34篇
  2015年   16篇
  2014年   26篇
  2013年   41篇
  2012年   24篇
  2011年   41篇
  2010年   37篇
  2009年   49篇
  2008年   43篇
  2007年   45篇
  2006年   35篇
  2005年   32篇
  2004年   24篇
  2003年   43篇
  2002年   25篇
  2001年   30篇
  2000年   22篇
  1999年   15篇
  1998年   25篇
  1997年   21篇
  1996年   16篇
  1995年   12篇
  1994年   17篇
  1993年   19篇
  1992年   15篇
  1991年   14篇
  1990年   13篇
  1989年   16篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   11篇
  1984年   20篇
  1983年   11篇
  1982年   17篇
  1981年   13篇
  1980年   15篇
  1979年   10篇
  1978年   7篇
  1977年   7篇
  1976年   9篇
  1975年   8篇
  1974年   8篇
  1973年   11篇
排序方式: 共有1011条查询结果,搜索用时 93 毫秒
161.
Electromagnetic Studies Of The Lithosphere And Asthenosphere   总被引:3,自引:0,他引:3  
In geodynamic models of the Earth's interior, the lithosphere and asthenosphere are defined in terms of their rheology. Lithosphere has high viscosity, and can be divided into an elastic region at temperatures below 350 °C and an anelastic region above 650 °C. Beneath the lithosphere lies the ductile asthenosphere, with one- to two-orders of magnitude lower viscosity. Asthenosphere represents the location in the mantle where the melting point (solidus) is most closely approached, and sometimes intersected. Seismic, gravity and isostatic observations provide constraints on lithosphere-asthenosphere structure in terms of shear-rigidity, density and viscosity, which are all rheological properties. In particular, seismic shear- and surface-wave analyses produce estimates of a low-velocity zone (LVZ) asthenosphere at depths comparable to the predicted rheological transitions. Heat flow measurements on the ocean floor also provide a measure of the thermal structure of the lithosphere.Electromagnetic (EM) observations provide complementary information on lithosphere-asthenosphere structure in terms of electrical conductivity. Laboratory studies of mantle minerals show that EM observations are very sensitive to the presence of melt or volatiles. A high conductivity zone (HCZ) in the upper mantle therefore represents an electrical asthenosphere (containing melt and/or volatile) that may be distinct from a rheological asthenosphere and the LVZ. Additionally, the vector propagation of EM fields in the Earth provides information on anisotropic conduction in the lithosphere and asthenosphere. In the last decade, numerous EM studies have focussed on the delineation of an HCZ in the upper mantle, and the determination of melt/volatile fractions and the dynamics of the lithosphere-asthenosphere. Such HCZs have been imaged under a variety of tectonic zones, including mid-ocean ridges and continental rifts, but Archaean shields show little evidence of an HCZ, implying that the geotherm is always below the mantle solidus. Anisotropy in the conductivity of oceanic and continental lithosphere has also been detected, but it is not clear if the HCZ is also anisotropic. Although much progress has been made, these results have raised new and interesting questions of asthenosphere melt/volatiles porosity and permeability, and lithosphere-upper mantle heterogeneity. It is likely that in the next decade EM will continue to make a significant contribution to our understanding of plate tectonic processes.  相似文献   
162.
Phase equilibria in the ternary system H2O-CO2-NaCl were studied at 800 °C and 9 kbar in internally heated gas pressure vessels using a modified synthetic fluid inclusion technique. The low rate of quartz overgrowth along the `b' and `a' axes of quartz crystals was used to avoid fluid inclusion formation during heating, prior to attainment of equilibrium run conditions. The density of CO2 in the synthetic fluid inclusions was calibrated using inclusions in the binary H2O-CO2 system synthesised by the same method and measured on the same heating-freezing stage. In the two-phase field, two types of fluid inclusions with different densities of CO2 were observed. Using mass balance calculations, these inclusions are used to constrain the miscibility gap and the orientation of two-phase tie-lines in the H2O-CO2-NaCl system at 800 °C and 9 kbar. The equation of state of Duan et al. (1995) approximately describes the P-T section of the ternary system up to about 40 wt% of NaCl. At higher NaCl concentrations the measured solubility of CO2 in the brine is much smaller than predicted by the EOS. A “salting out” effect must be added to the equation of state to include coulomb interaction in the model of Anderko and Pitzer (1993) and Pitzer and Jiang (1996). The new experimental data together with published data up to 5 kbar (Shmulovich et al. 1995) encompass practically all subsolidus crustal P-T conditions. A feature of the new experimental results is the large compositional range in the H2O-CO2-NaCl system occupied by the stability fields of halite + CO2-rich fluid ± H2O-NaCl brine. The prediction of halite stability in equilibrium with CO2-rich fluid in deep-crustal rocks is supported by recent petrological and fluid inclusion studies of granulites. Received: 29 June 1998 / Accepted: 17 March 1999  相似文献   
163.
Beavers, primarily through the building of dams, can deliver significant geomorphic modifications and result in changes to nutrient and sediment fluxes. Research is required to understand the implications and possible benefits of widespread beaver reintroduction across Europe. This study surveyed sediment depth, extent and carbon/nitrogen content in a sequence of beaver pond and dam structures in South West England, where a pair of Eurasian beavers (Castor fiber) were introduced to a controlled 1.8 ha site in 2011. Results showed that the 13 beaver ponds subsequently created hold a total of 101.53 ± 16.24 t of sediment, equating to a normalised average of 71.40 ± 39.65 kg m2. The ponds also hold 15.90 ± 2.50 t of carbon and 0.91 ± 0.15 t of nitrogen within the accumulated pond sediment. The size of beaver pond appeared to be the main control over sediment storage, with larger ponds holding a greater mass of sediment per unit area. Furthermore, position within the site appeared to play a role with the upper‐middle ponds, nearest to the intensively‐farmed headwaters of the catchment, holding a greater amount of sediment. Carbon and nitrogen concentrations in ponds showed no clear trends, but were significantly higher than in stream bed sediment upstream of the site. We estimate that >70% of sediment in the ponds is sourced from the intensively managed grassland catchment upstream, with the remainder from in situ redistribution by beaver activity. While further research is required into the long‐term storage and nutrient cycling within beaver ponds, results indicate that beaver ponds may help to mitigate the negative off‐site impacts of accelerated soil erosion and diffuse pollution from agriculturally dominated landscapes such as the intensively managed grassland in this study. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
164.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   
165.
The 1 Myr tephra records of IODP (International Ocean Discovery Program) Holes U1436A and U1437B in the Izu‐Bonin fore‐ and reararc were investigated in order to assess provenance and eruptive volumes, respectively. In total, 304 tephra samples were examined and 260 primary tephra layers were identified. Tephra provenance was determined by means of major and trace element compositions of glass shards and distinguished between Japan and Izu‐Bonin arc origin of the tephra layers. A total of 33 marine tephra compositions were correlated to the Japan arc and 227 to the Izu arc. Twenty marine tephra layers were correlated between the two drilling sites. Additionally, we defined eleven correlations of marine tephra deposits to major widespread Japanese eruptions; from the 1.05 Ma Shishimuta‐Pink Tephra to the 30 ka Aira‐Tn Tephra, both from Kyushu Island. These eruptions provide independent time markers within the sediment record and six correlations were used to date tephra layers from Japan in Hole U1436A to establish an alternative age model for this hole. Furthermore, the minimum distal tephra volumes of all detected events were calculated, which enabled the comparison of the tephra volumes that derived from the Japan and the Izu‐Bonin arcs. For some of the major Japanese eruptions these are the first volume estimations that also include distal deposits. All of the Japanese tephras derived from events with eruption magnitude Mv ≥ 5.6 and three of the investigated eruptions reach magnitudes Mv ≥ 7. Volcanic events of the Izu‐Bonin arc have mostly eruption magnitudes Mv ≤ 5.  相似文献   
166.
This paper presents new trends in the relationship between the ductility reduction factor and the ductility demand in the seismic design of buildings. A total of 4860 inelastic time-history analyses were carried out to study this relationship using 60 single-degree-of-freedom models excited by an ensemble of 81 earthquake accelerogram records from around the world. The asymmetrical distribution of the results highlighted the inaccuracies associated with assuming a normal distribution simply described by the mean and standard deviation to represent the data. A probability of exceedence approach has been used based on counting the number of occurrences the ductility demand exceeds a specified level. The ductility reduction factors developed in this study are consistent with other studies in the long-period range but are different in the short-period range. The ductility reduction factor for very short period buildings of limited ductility has been found to be greater than previously predicted. © 1998 John Wiley & Sons, Ltd.  相似文献   
167.
This paper presents a theoretical approach to analyse coupled, linear thermoporoelastic fields in a saturated porous medium under radial and spherical symmetry. The governing equations account for compressibility and thermal expansion of constituents, heat sink due to thermal dilatation of water and thermal expansion of the medium, and thermodynamically coupled heatwater flow. It has been reported in the literature that thermodynamically coupled heat–water flows known as thermo-osmosis and thermal filtration have the potential to significantly alter the flow fields in clay-rich barriers in the near field of a underground waste containment scheme. This study presents a mathematical model and examines the effects of thermo-osmosis and thermal-filtration on coupled consolidation fields in a porous medium with a cavity. Analytical solutions of the governing equations are presented in the Laplace transform space. A numerical inversion scheme is used to obtain the time-domain solutions for a cylindrical cavity in a homogeneous or a non-homogeneous medium. A closed form time-domain solution is presented for a spherical cavity in a homogeneous medium. Selected numerical solutions for homogeneous and non-homogeneous media show a significant increase in pore pressure and displacements due to the presence of thermodynamically coupled flows and a negligible influence on temperature. © 1998 John Wiley & Sons, Ltd.  相似文献   
168.
169.
The stability of end-bearing piles that are supported laterally along their entire length by an elastic Winkler foundation is investigated for the case when the coefficient of horizontal subgrade reaction varies linearly with depth. A pattern of clustering of buckling modes is shown to occur and the approximate modelling of the elastic foundation by averaging the stiffness of the subgrade is discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   
170.
Extreme erosion events can produce large short-term sediment fluxes. Such events complicate erosion rates estimated from cosmogenic nuclide concentrations in river sediment by providing sediment with a concentration different from the long-term basin average. We present a detrital 10Be study in southern Taiwan, with multiple samples obtained in a time sequence bracketing the 2009 Typhoon Morakot, to assess the impact of landslide sediment on 10Be concentrations (N10Be) in river sediment. Sediment samples were collected from 13 major basins, two or three times over the last decade, to observe the temporal variation of N10Be. Landslide inventories with time intervals of 5–6 years were used to quantify sediment flux changes. A negative correlation between N10Be and landslide areal density indicates dilution of N10Be by landslide sediment. Denudation rates estimated from the diluted N10Be can be up to three times higher than the lowest rate derived from the same basins. Observed increases imply that, 3 years after the passage of Typhoon Morakot, fluvial channels still contain a considerable amount of sediment provided by hillslope landslides during the event. However, higher N10Be in 2016 samples indicate that the contribution from landslide sediment at the sampled grain size has decreased with time. The correlation between changes in N10Be and landslide area and volume is not strong, likely resulting from the stochastic and complex nature of sediment transport. To simultaneously evaluate the volume of landslide-derived sediment and estimate the background denudation rate, associated with less impulsive sediment supply, we constructed a sediment-mixing model with the time series of N10Be and landslide inventories. The spatial pattern of background erosion rate in southern Taiwan is consistent with the regional tectonic framework, indicating that the landscape is evolving mainly in response to the tectonic forcing, and this signal is modified, but not obscured by impulsive sediment supply. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号