首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   966篇
  免费   26篇
  国内免费   19篇
测绘学   19篇
大气科学   55篇
地球物理   177篇
地质学   371篇
海洋学   87篇
天文学   194篇
综合类   2篇
自然地理   106篇
  2022年   4篇
  2021年   4篇
  2020年   11篇
  2019年   8篇
  2018年   25篇
  2017年   17篇
  2016年   34篇
  2015年   16篇
  2014年   26篇
  2013年   41篇
  2012年   24篇
  2011年   41篇
  2010年   37篇
  2009年   49篇
  2008年   43篇
  2007年   45篇
  2006年   35篇
  2005年   32篇
  2004年   24篇
  2003年   43篇
  2002年   25篇
  2001年   30篇
  2000年   22篇
  1999年   15篇
  1998年   25篇
  1997年   21篇
  1996年   16篇
  1995年   12篇
  1994年   17篇
  1993年   19篇
  1992年   15篇
  1991年   14篇
  1990年   13篇
  1989年   16篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   11篇
  1984年   20篇
  1983年   11篇
  1982年   17篇
  1981年   13篇
  1980年   15篇
  1979年   10篇
  1978年   7篇
  1977年   7篇
  1976年   9篇
  1975年   8篇
  1974年   8篇
  1973年   11篇
排序方式: 共有1011条查询结果,搜索用时 25 毫秒
111.
112.
This paper investigates how using different regional climate model (RCM) simulations affects climate change impacts on hydrology in northern Europe using an offline hydrological model. Climate change scenarios from an ensemble of seven RCMs, two global climate models (GCMs), two global emissions scenarios and two RCMs of varying resolution were used. A total of 15 climate change simulations were included in studies on the Lule River basin in Northern Sweden. Two different approaches to transfer climate change from the RCMs to hydrological models were tested. A rudimentary estimate of change in hydropower potential on the Lule River due to climate change was also made. The results indicate an overall increase in river flow, earlier spring peak flows and an increase in hydropower potential. The two approaches for transferring the signal of climate change to the hydrological impacts model gave similar mean results, but considerably different seasonal dynamics, a result that is highly relevant for other types of climate change impacts studies.  相似文献   
113.
To better understand the implications of anthropogenic climate change for three major Mid-Atlantic estuaries (the Chesapeake Bay, the Delaware Bay, and the Hudson River Estuary), we analyzed the regional output of seven global climate models. The simulation given by the average of the models was generally superior to individual models, which differed dramatically in their ability to simulate twentieth-century climate. The model average had little bias in its mean temperature and precipitation and, except in the Lower Chesapeake Watershed, was able to capture the twentieth-century temperature trend. Weaknesses in the model average were too much seasonality in temperature and precipitation, a shift in precipitation’s summer maximum to spring and winter minimum to fall, interannual variability that was too high in temperature and too low in precipitation, and inability to capture the twentieth-century precipitation increase. There is some evidence that model deficiencies are related to land surface parameterizations. All models warmed over the twenty-first century under the six greenhouse gas scenarios considered, with an increase of 4.7 ± 2.0°C (model mean ± 1 standard deviation) for the A2 scenario (a medium-high emission scenario) over the Chesapeake Bay Watershed by 2070–2099. Precipitation projections had much weaker consensus, with a corresponding increase of 3 ± 12% for the A2 scenario, but in winter there was a more consistent increase of 8 ± 7%. The projected climate averaged over the four best-performing models was significantly cooler and wetter than the projected seven-model-average climate. Precipitation projections were within the range of interannual variability but temperature projections were not. The implied research needs are for improvements in precipitation projections and a better understanding of the impacts of warming on streamflow and estuarine ecology and biogeochemistry.  相似文献   
114.
115.
116.
117.
Igneous intrusions in coal seams are found in 80 % of coal mines in the Huaibei coalfield, China, and coal and gas outburst accidents have occurred 11 times under a 120-m-thick sill in the Haizi mining field. The magma’s heat had a significant controlling effect on coal seam gas occurrence. Based on theoretical analysis, experimental tests and site validation, we analyzed the temperature distribution following magma intrusion into coal measure strata and the variations in multiple physical parameters and adsorption/desorption characteristics between the underlying coal seams beneath the sill in the Haizi mining field and coal seams uninfluenced by magma intrusion in the adjacent Linhuan mining field. The research results show that the main factors controlling the temperature distribution of the magma and surrounding rocks in the cooling process include the cooling time and the thickness and initial temperature of the magmatic rock. As the distance from sill increases, the critical effective temperature and the duration of sustained high temperatures decrease. The sill in the Haizi mining field significantly promoted coal seam secondary hydrocarbon generation in the thermally affected area, which generated approximately 340 m3/t of hydrocarbon. In the magma-affected area, the metamorphic grade, micropore volume, amount of gas adsorption, initial speed of gas desorption, and amount of desorption all increase. Fluid entrapment by sills usually causes the gas pressure and gas content of the underlying coal seams to increase. As a result, the outburst risks from coal seams increases as well.  相似文献   
118.
Electromagnetic Studies Of The Lithosphere And Asthenosphere   总被引:3,自引:0,他引:3  
In geodynamic models of the Earth's interior, the lithosphere and asthenosphere are defined in terms of their rheology. Lithosphere has high viscosity, and can be divided into an elastic region at temperatures below 350 °C and an anelastic region above 650 °C. Beneath the lithosphere lies the ductile asthenosphere, with one- to two-orders of magnitude lower viscosity. Asthenosphere represents the location in the mantle where the melting point (solidus) is most closely approached, and sometimes intersected. Seismic, gravity and isostatic observations provide constraints on lithosphere-asthenosphere structure in terms of shear-rigidity, density and viscosity, which are all rheological properties. In particular, seismic shear- and surface-wave analyses produce estimates of a low-velocity zone (LVZ) asthenosphere at depths comparable to the predicted rheological transitions. Heat flow measurements on the ocean floor also provide a measure of the thermal structure of the lithosphere.Electromagnetic (EM) observations provide complementary information on lithosphere-asthenosphere structure in terms of electrical conductivity. Laboratory studies of mantle minerals show that EM observations are very sensitive to the presence of melt or volatiles. A high conductivity zone (HCZ) in the upper mantle therefore represents an electrical asthenosphere (containing melt and/or volatile) that may be distinct from a rheological asthenosphere and the LVZ. Additionally, the vector propagation of EM fields in the Earth provides information on anisotropic conduction in the lithosphere and asthenosphere. In the last decade, numerous EM studies have focussed on the delineation of an HCZ in the upper mantle, and the determination of melt/volatile fractions and the dynamics of the lithosphere-asthenosphere. Such HCZs have been imaged under a variety of tectonic zones, including mid-ocean ridges and continental rifts, but Archaean shields show little evidence of an HCZ, implying that the geotherm is always below the mantle solidus. Anisotropy in the conductivity of oceanic and continental lithosphere has also been detected, but it is not clear if the HCZ is also anisotropic. Although much progress has been made, these results have raised new and interesting questions of asthenosphere melt/volatiles porosity and permeability, and lithosphere-upper mantle heterogeneity. It is likely that in the next decade EM will continue to make a significant contribution to our understanding of plate tectonic processes.  相似文献   
119.
A design study has been conducted to explore the use of structural cladding panels with energy-dissipating cladding-to-frame connections for seismic-resistant design. The study identifies several issues involved in the modelling and analysis of frames with energy-dissipating cladding-to-frame connections, establishes concepts for design, and provides a preliminary assessment of the force and deformation demands that are likely to be placed on panels and connections. Non-linear dynamic analyses indicate that the clad frames perform well, based on observations about maximum interstorey drifts, maximum plastic hinge rotations in the frames, and maximum ductility demands on the cladding-to-frame connections.  相似文献   
120.
3He/4He ratios in lavas erupted during the last 360 years at Mt. Vesuvius are between 2.2 and 2.7 RA (RA = atmospheric ratio of 1.39 × 10−6), and are among the lowest values measured in young volcanic rocks. They are also identical to values measured in summit crater fumaroles sampled during 1987–1991. This agreement indicates that the 3He/4He ratio in the crater fumaroles faithfully tracks the magmatic value. The relatively low and uniform 3He/4He ratio in the lavas reflects either a mantle source enriched in (U + Th)/3He, or a mixture of magmatic and crustal components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号