首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   29篇
  国内免费   10篇
测绘学   15篇
大气科学   44篇
地球物理   134篇
地质学   313篇
海洋学   77篇
天文学   108篇
综合类   2篇
自然地理   96篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   7篇
  2018年   19篇
  2017年   12篇
  2016年   29篇
  2015年   14篇
  2014年   23篇
  2013年   35篇
  2012年   15篇
  2011年   32篇
  2010年   29篇
  2009年   31篇
  2008年   35篇
  2007年   33篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   36篇
  2002年   23篇
  2001年   27篇
  2000年   18篇
  1999年   12篇
  1998年   21篇
  1997年   13篇
  1996年   14篇
  1995年   9篇
  1994年   13篇
  1993年   11篇
  1992年   12篇
  1991年   13篇
  1990年   11篇
  1989年   10篇
  1988年   10篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1981年   12篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   6篇
  1973年   9篇
排序方式: 共有789条查询结果,搜索用时 562 毫秒
501.
In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine‐resolution catchment‐wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high‐resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
502.
503.
504.
505.
Mesoproboloid.es excavata n. sp. is described and illustrated from material collected at Kaikoura, New Zealand. It differs most conspicuously from the other three known species of the genus in the posterodistally excavate coxa 4, the stout, blunt lobe distally on article 1 of antenna 1, the crenulate ventral margins of coxae 2–4, and the castellate posterior margin of article 2 of pereopod 5. The structure and distribution of minute organs, probably sensory receptors, densely distributed over much, of the integument was examined by scanning electron microscopy. The genus Mesoproboloides is now seen to be cold temperate‐subantarctic in occurrence.  相似文献   
506.
Structural studies in the Sydney region have revealed the presence of vertical to near-vertical, north-northeast-striking faults that are manifest as joint swarms and highly brecciated zones in which gouge of varying thickness is developed. Strike-slip movement accompanied by minor dip-slip, normal movement occurred on these faults. Timing of movement on these faults by K–Ar dating of illite and illite–smectite in fractions extracted from fault gouges, was attempted. These dates were compared with dates obtained from the host-rocks. K–Ar ages determined from the 2–10 μm to <0.1 μm fractions produced from the gouge and host-rocks, range from 159.5 ± 3.2 to 106.6 ± 2.1 Ma (n = 26). In <0.5 μm fractions extracted from the gouges that are less contaminated by detrital phases, K–Ar ages vary from 138 ± 4.4 to 106.5 ± 2.1 Ma (mean 121 Ma; n = 6) which are similar to ages obtained from host-rocks in the Sydney region. The similarity in age between the host rocks and gouge suggests that the K–Ar system has been reset. The resetting is attributed to a thermal event at ca 120 Ma related to the underplating of felsic intrusions associated with early stages of breakup of East Gondwana. Subsequent to this event, dykes of Early Eocene age (K–Ar whole-rock: 51.0 ± 1.1 Ma) exploited north-northeast-striking faults and subsequently developed brecciated margins. These observations and the fact that gouge formed before the thermal event suggests that movement took place on north-northeast-striking faults prior to 120 Ma and after 51 Ma.  相似文献   
507.
Abstract

Dykes are common in the wave-cut platforms along the coast from Newcastle to Sydney. According to some authors, they may be related to the opening of the Tasman Sea that commenced ca 84?Ma ago. However, there are few detailed radiogenic dating and geochemical studies to evaluate this. We attempt to resolve this by K–Ar dating of plagioclase in and geochemical studies of, basaltic dykes intruding Permo-Triassic sequences on the wave-cut platforms and Carboniferous and Permo-Triassic sequences inland. The plagioclase separated from the dykes give K–Ar ages ranging from 266 to 53?Ma with the majority older than 84?Ma indicating that most dykes were emplaced before the Tasman Seafloor formation. The dykes are generally mildly alkaline, high-Ti basalts; fewer are tholeiitic and calc-alkaline, low-Ti basalts. Strongly light rare earth element (LREE)-enriched patterns typify the former and flat, LREE-depleted or slightly to moderately enriched LREE patterns, the latter. High-Ti basalts have ocean-island-basalt-like and low-Ti basalts, calc-alkaline or mid-ocean ridge basalt (MORB)-like patterns. Most high-Ti and some low-Ti basalts show plume-like characteristics, others N-type MORB and arc-like characteristics. Dykes intruding the Carboniferous sequences show a distinct contamination signature that could be crustal or due to subduction-related metasomatism of the subcontinental lithospheric mantle. The sources of the basaltic magmas vary substantially and in places changes with time. All alkali basalts are derived from enriched asthenospheric sources at varying depths (90–147?km) and most tholeiitic, low-Ti basalts have been extracted from asthenospheric and depleted asthenospheric–lithospheric sources indicating substantial compositional heterogeneity of the mantle. Further, Nd model ages varying from Neoproterozoic (940–580?Ma) to Paleozoic (460–370?Ma) suggest variation in the age of mantle sources for the basalts.  相似文献   
508.
The oxygen content of the Earth's surface environment is thought to have increased in two broad steps: the Great Oxygenation Event (GOE) around the Archean–Proterozoic boundary and the Neoproterozoic Oxygenation Event (NOE), during which oxygen possibly accumulated to the levels required to support animal life and ventilate the deep oceans. Although the concept of the GOE is widely accepted, the NOE is less well constrained and its timing and extent remain the subjects of debate. We review available evidence for the NOE against the background of major climatic perturbations, tectonic upheaval related to the break-up of the supercontinent Rodinia and reassembly into Gondwana, and, most importantly, major biological innovations exemplified by the Ediacarian Biota and the Cambrian ‘Explosion’.Geochemical lines of evidence for the NOE include perturbations to the biogeochemical cycling of carbon. Generally high δ13C values are possibly indicative of increased organic carbon burial and the release of oxidative power to the Earth's surface environment after c. 800 Ma. A demonstrably global and primary record of extremely negative δ13C values after about 580 Ma strongly suggests the oxidation of a large dissolved organic carbon pool (DOC), the culmination of which around c. 550 Ma coincided with an abrupt diversification of Ediacaran macrobiota. Increasing 87Sr/86Sr ratios toward the Neoproterozoic–Cambrian transition indicates enhanced continental weathering which may have fuelled higher organic production and burial during the later Neoproterozoic.Evidence for enhanced oxidative recycling is given by the increase in sulfur isotope fractionation between sulfide and sulfate, exceeding the range usually attained by sulfate reduction alone, reflecting an increasing importance of the oxidative part in the sulfur cycle. S/C ratios attained a maximum during the Precambrian–Cambrian transition, further indicating higher sulfate concentrations in the ocean and a transition from dominantly pyrite burial to sulfate burial after the Neoproterozoic. Strong evidence for the oxygenation of the deep marine environment has emerged through elemental approaches over the past few years which were able to show significant increases in redox-sensitive trace-metal (notably Mo) enrichment in marine sediments not only during the GOE but even more pronounced during the inferred NOE. In addition to past studies involving Mo enrichment, which has been extended and further substantiated in the current review, we present new compilations of V and U concentrations in black shales throughout Earth history that confirm such a rise and further support the NOE. With regard to ocean ventilation, we also review other sedimentary redox indicators, such as iron speciation, molybdenum isotopes and the more ambiguous REE patterns. Although the timing and extent of the NOE remain the subjects of debate and speculation, we consider the record of redox-sensitive trace-metals and C and S contents in black shales to indicate delayed ocean ventilation later in the Cambrian on a global scale with regard to rising oxygen levels in the atmosphere which likely rose during the Late Neoproterozoic.  相似文献   
509.
Examination of two radiocarbon-dated vibrocores taken from south of St Kilda at a water depth of about 155 m, a short distance within the maximum position of the Late Devensian (Dimlington Stadial) ice sheet, suggests that the St Kilda Basin became free of glacier ice after 15250 yr BP. Sedimentation in a shallow, low energy, high arctic, muddy environment continued until after 13500 yr BP. There followed a higher energy temperate episode during which water depths were roughly about 40 m: this is correlated with the latter part of the Windermere Interstadial and with the warmer interval known in shallow Scottish seas about or a little before 11 000 yr BP. The Loch Lomond (Younger Dryas) Stadial is marked in the vibrocores by the return of muddy sediments and a cold-water fauna. Relatively shallow water conditions seem to have persisted into the earliest Flandrian, when the water depth was still roughly 60 m, corresponding to a sea-level in the area 90–100 m below present. It is suggested that pack ice was widespread in the northeast Atlantic before the Windermere Interstadial and also during the Loch Lomond Stadial, when it transported shards of Icelandic volcanic ash into the St Kilda basin. Estimates of sea-surface temperature for the last part of the Windermere Interstadial are close to those derived from the deep-sea record for the same period.  相似文献   
510.
The Kapuskasing Structural Zone (KSZ) reveals a section through the Archean lower crustal granoblastic gneisses. Our new paleomagnetic data largely agree with previous work but we show that interpretations vary according to the choices of statistical, demagnetization and field-correction techniques. First, where the orientation distribution of characteristic remanence directions on the sphere is not symmetrically circular, the commonly used statistical model is invalid [Fisher, R.A., Proc. R. Soc. A217 (1953) 295]. Any tendency to form an elliptical distribution indicates that the sample is drawn from a Bingham-type population [Bingham, C., 1964. Distributions on the sphere and on the projective plane. PhD thesis, Yale University]. Fisher and Bingham statistics produce different confidence estimates from the same data and the traditionally defined mean vector may differ from the maximum eigenvector of an orthorhombic Bingham distribution. It seems prudent to apply both models wherever a non-Fisher population is suspected and that may be appropriate in any tectonized rocks. Non-Fisher populations require larger sample sizes so that focussing on individual sites may not be the most effective policy in tectonized rocks. More dispersed sampling across tectonic structures may be more productive. Second, from the same specimens, mean vectors isolated by thermal and alternating field (AF) demagnetization differ. Which treatment gives more meaningful results is difficult to decipher, especially in metamorphic rocks where the history of the magnetic minerals is not easily related to the ages of tectonic and petrological events. In this study, thermal demagnetization gave lower inclinations for paleomagnetic vectors and thus more distant paleopoles. Third, of more parochial significance, tilt corrections may be unnecessary in the KSZ because magnetic fabrics and thrust ramp are constant in orientation to the depth at which they level off, at approximately 15-km depth. With Archean geothermal gradients, primary remanences were blocked after the foliation was tilted to rise on the thrust ramp. Therefore, the rocks were probably magnetized in their present orientation; tilting largely or entirely predates magnetization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号