首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   29篇
  国内免费   10篇
测绘学   15篇
大气科学   44篇
地球物理   134篇
地质学   313篇
海洋学   77篇
天文学   108篇
综合类   2篇
自然地理   96篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   7篇
  2018年   19篇
  2017年   12篇
  2016年   29篇
  2015年   14篇
  2014年   23篇
  2013年   35篇
  2012年   15篇
  2011年   32篇
  2010年   29篇
  2009年   31篇
  2008年   35篇
  2007年   33篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   36篇
  2002年   23篇
  2001年   27篇
  2000年   18篇
  1999年   12篇
  1998年   21篇
  1997年   13篇
  1996年   14篇
  1995年   9篇
  1994年   13篇
  1993年   11篇
  1992年   12篇
  1991年   13篇
  1990年   11篇
  1989年   10篇
  1988年   10篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1981年   12篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   6篇
  1973年   9篇
排序方式: 共有789条查询结果,搜索用时 93 毫秒
141.
An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30′–52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single‐grain detrital‐zircon U‐Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin‐filling succession (>4000‐m‐thick). Prominent peaks in detrital‐zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (ca. 147–155 Ma) into the Andean fold‐thrust belt was established in the Santonian (ca. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (ca. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital‐zircon ages indicate that the Magallanes foredeep received young arc‐derived detritus throughout its ca. 20 m.y. filling history, constraining the timing of basin‐filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital‐zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well‐studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin.  相似文献   
142.
Early Cenozoic terrestrial deposits in the western United States represent well‐preserved archives of climatic and tectonic processes that together shaped the Earth's surface during the demise of a large continental plateau. This study examines a Cenozoic terrestrial sedimentary sequence in the central part of the Cordilleran orogen (Montana) using sedimentologic and geochemical techniques. At ~49 Ma, we observe rapid major shifts in oxygen, carbon and strontium isotope records that are too large to directly reflect changes in meteoric water composition due to simple orographic rainout. The transition to low‐δ18O values in pedogenic carbonate in concert with changes in the composition of clastic material at ~49 Ma points to the input of evolved meteoric water to the hydrological cycle due to a change in the source of waters reaching Cordilleran intermontane regions in southwestern Montana. This drainage reorganization coincides with the initiation of magmatism and extension to the west in what is now Montana and Idaho. The sedimentological record shows evidence that depositional gradients increased in the study area ~46 Ma, ~3 Myr after the drainage reorganization occurred. This interval is most likely the time it took for extensional deformation to propagate to the study area itself. Evidence of freshening events in Laramide Basins to the southeast suggests that this drainage reorganization diverted waters to progressively fill these basins and highlights the impact of post‐plateau extension‐related landscape reorganization on river networks and lake dynamics. This study also emphasizes the importance of using multiple tools in deciphering topographic history through the study of terrestrial basin deposits, in that interpretation based on any single method employed would have compromised our ability to successfully identify the regional evolution of topography and drainage networks.  相似文献   
143.
Environmental policy discussion is replete with references to water security, food security, ecosystem health, community resilience, sustainable development, and sustainable urbanism. These terms are, by their very nature, ambiguous and difficult to define; they allow room, however, for a variety of actors to conceptualize water, food, ecological, economic, and urban problems in ways that allow them to move forward on contentious issues. This article focuses on the idea of water security and asks how it is conceptualized and used for regional policy debate in western Canada. We asked fifty-eight water stakeholders from the Saskatchewan River Basin to define water security, identify major barriers to security, and prioritize water problems. Responses showed there are myriad ways to think about water security, ranging from narrow conceptualizations, such as reliability, quality, and quantity, to broader sustainability perspectives about the nature of resource development and its social and economic consequences. The human dimensions of water security (governance, land use, and competing demands) were assigned higher priority than its biophysical aspects (flooding, droughts, and climate change). Framing water security to emphasize the human capacity to manage uncertain and rapid biophysical and societal change offers the opportunity to unite actors who otherwise would be separated by core environmental values, definitions of water security, provincial context (Alberta vs. Saskatchewan), and occupation.  相似文献   
144.
145.
Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) 18O/16O datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233–262, 1997; Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010), these authors find variations in δ18Ool (~4.6–6.0 ‰) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231–241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) speculate that δ18Ool values for La Palma olivine grains measured by LF (Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in δ18Ool values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that δ18Ool is weakly correlated (R 2 = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514–524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member δ18O values for HIMU-peridotite (δ18O = 5.3 ± 0.3 ‰) and depleted pyroxenite (δ18O = 5.9 ± 0.3 ‰) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226–234, 2011), there are significant differences in the predicted δ18O values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565–6589, 2010) proposed a mantle source for La Palma lavas with low-δ18O (<5 ‰), rather than higher-δ18O (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349–363, 2011). Here we question the approach of using weakly correlated variations in δ18Ool and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.  相似文献   
146.
In this study, we implement Particle Filter (PF)-based assimilation algorithms to improve root-zone soil moisture (RZSM) estimates from a coupled SVAT-vegetation model during a growing season of sweet corn in North Central Florida. The results from four different PF algorithms were compared with those from the Ensemble Kalman Filter (EnKF) when near-surface soil moisture was assimilated every 3 days using both synthetic and field observations. In the synthetic case, the PF algorithm with the best performance used residual resampling of the states and obtained resampled parameters from a uniform distribution and provided reductions of 76% in root mean square error (RMSE) over the openloop estimates. The EnKF provided the RZSM and parameter estimates that were closer to the truth than the PF with an 84% reduction in RMSE. When field observations were assimilated, the PF algorithm that maintained maximum parameter diversity offered the largest reduction of 16% in root mean square difference (RMSD) over the openloop estimates. Minimal differences were observed in the overall performance of the EnKF and PF using field observations since errors in model physics affected both the filters in a similar manner, with maximum reductions in RMSD compared to the openloop during the mid and reproductive stages.  相似文献   
147.
Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ??600?m in a SW?CNE direction with chimneys occurring over a ??145-m depth interval, between ??1,690 and 1,545?m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2?C3?m in height, with some reaching 6?C7?m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35?years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2?C3?m thick. Two main types of chimney predominate: Cu-rich (up to 28.5?wt.% Cu) and, more commonly, Zn-rich (up to 43.8?wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91?ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (??0.5?m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (??300°C), acidic (pH????2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (??122°C), more acidic (pH?1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3?years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206?mM/kg at the Cone site); high CO2/3He; negative ??D and ??18OH2O for vent fluids; negative ??34S for sulfides (to ?4.6??), sulfur (to ?10.2??), and ??15N2 (to ?3.5??); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu?+?Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of ??magmatic?? mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (??2.5?km long), narrow (??300-m diameter) ??pipes,?? consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.  相似文献   
148.
Hydrogen gas produced in the subsurface from the hydration of mafic rocks is known to be a major energy source for chemolithotrophic life in extreme environments such as hydrothermal vents. The possibility that in situ anaerobic microorganisms present in the deep subsurface are sustained by low temperature H2-generating water–rock reactions taking place around them is being investigated. Whether the growth and activity of H2-utilizing microbes directly influences aqueous geochemistry, rates of mineral dissolution, and the chemical composition of the alteration products is also being quantitatively evaluated.To explore how microorganisms are affected by water–rock reactions, and how their activity may in turn affect reaction progress, laboratory experiments have been conducted to monitor the growth of a methanogenic Archaea in the presence of H2(g) produced from low temperature water–Fe0–basalt reactions. In these systems, the conversion of Fe(II) to Fe(III) and subsequent hydrolysis of water is responsible for the production of H2(g). To characterize key components of the geochemical system, time series measurements of H2 and CH4 gas concentrations, Fe and Si aqueous concentrations, and spatially resolved synchrotron-based analyses of microscale Fe distribution and speciation were conducted. Culture experiments were compared with an abiotic control to document changes in the geochemistry both in the presence and absence of the methanogen.In the control abiotic batch experiment, H2 was continuously produced, until the headspace became saturated, while in the biotic experiments, microbial consumption of H2 for methanogenesis draws H2 down and produces CH4. Purging the headspace gas reinitiates H2 and CH4 production in abiotic and culture experiments, respectively. Mass balance analysis of the amount of CH4 produced suggests that the total H2 production in microbial experiments does not exceed the abiotic experiment. Soluble Si concentrations, while buffered to relatively constant values, were higher in culture experiments than the abiotic control.Iron(aq) concentrations appear to respond to perturbations of H2 and CH4 gas concentrations in both culture experiments and the abiotic control. A pulse of Fe preceded the rise in either H2 or CH4 production, and as the gas concentrations increased the Fe(aq) decreased. Iron-bearing mineral assemblages change with increasing reaction time and mineral assemblages vary between culture experiments and the abiotic control. These geochemical trends suggest that there are different reaction paths between the culture experiments and the abiotic control.The hydration of mafic rocks is a common geologic reaction and one that has taken place on Earth for the majority of its history and is postulated to occur on Mars. These reactions are important because of their effect on the rheology and geochemistry of the ocean crust. While most often studied at temperatures of ~250 °C, this work suggests that at lower temperatures microorganisms may have a profound effect on what has long been thought to be solely an abiotic reaction, and may produce diagnostic mineral assemblages that will be preserved in the geological record.  相似文献   
149.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   
150.
The ˜4000 m thick and ∼20 Myr deep-water sedimentary fill of the Upper Cretaceous Magallanes Basin was deposited in three major phases, each with contrasting stratigraphic architecture: (1) the oldest deep-water formation (Punta Barrosa Formation) comprises tabular to slightly lenticular packages of interbedded sandy turbidites, slurry-flow deposits, and siltstone that are interpreted to record lobe deposition in an unconfined to weakly ponded setting; (2) the overlying, 2500 m thick and shale-dominated Cerro Toro Formation includes a succession of stacked conglomeratic and sandstone channel-fill deposits with associated finer-grained overbank deposits interpreted to record deposition in a foredeep-axial channel-levee system; (3) the final phase of deep-water sedimentation is characterized by sandstone-rich successions of highly variable thickness and cross-sectional geometry and mudstone-rich mass transport deposits (MTDs) that are interpreted to record deposition at the base-of-slope and lower slope segments of a prograding delta-fed slope system. The deep-water formations are capped by shallow-marine and deltaic deposits of the Dorotea Formation.These architectural changes are associated with the combined influences of tectonically driven changes and intrinsic evolution, including: (1) the variability of amount and type of source material, (2) variations in basin shape through time, and (3) evolution of the fill as a function of prograding systems filling the deep-water accommodation. While the expression of these controls in the stratigraphic architecture of other deep-water successions might differ in detail, the controls themselves are common to all deep-water basins. Information about source material and basin shape is contained within the detrital record and, when integrated and analyzed within the context of stratigraphic patterns, attains a more robust linkage of processes to products than stratigraphic characterization alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号