首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24614篇
  免费   177篇
  国内免费   918篇
测绘学   1415篇
大气科学   1985篇
地球物理   4562篇
地质学   11659篇
海洋学   1019篇
天文学   1653篇
综合类   2161篇
自然地理   1255篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   4765篇
  2017年   4041篇
  2016年   2579篇
  2015年   238篇
  2014年   82篇
  2013年   37篇
  2012年   996篇
  2011年   2740篇
  2010年   2020篇
  2009年   2323篇
  2008年   1895篇
  2007年   2370篇
  2006年   58篇
  2005年   199篇
  2004年   414篇
  2003年   416篇
  2002年   258篇
  2001年   56篇
  2000年   57篇
  1999年   17篇
  1998年   27篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   3篇
  1991年   5篇
  1990年   7篇
  1989年   1篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1981年   25篇
  1980年   23篇
  1978年   3篇
  1976年   7篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   3篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The aim of this paper is to propose a location model of earthquake emergency service depot on the basis of hybrid multi-attribute decision-making method. The advantage of the proposed method is that practical mixed uncertainty of location decision information is considered, and the corresponding factors that affect the location of transfer stations are contained. To solve the location problem, a hybrid multi-attribute decision procedure without information transformation is developed. Besides, a novel weighting method and aggregation process is given. Finally, a numerical example is provided to show the feasibility and validity of the proposed method.  相似文献   
942.
Network-based ambiguity resolution (AR) between reference stations is the prerequisite to realize a precise real-time kinematic positioning service. With the help of BDS triple-frequency signals, we can efficiently deal with the ionospheric delay and tropospheric delay, and achieve rapid and reliable AR. To overcome the inaccurate ionospheric delay estimated by the geometry-free three carrier ambiguity resolution (GF TCAR) technique, which leads to failure in the original ambiguity resolution, we propose an ionospheric-free (IF) TCAR method to resolve the ambiguity between the reference stations over long baselines. Taking full advantage of the known positions of the reference stations, the easily resolved extra-wide-lane (EWL) ambiguity, and the IF phase combinations, we can reliably fix the wide-lane (WL) ambiguity. A Kalman filter is applied to estimate precise IF ambiguities and the original ambiguity is resolved with the fixed WL ambiguity. A numerical analysis with triple-frequency BDS data from three long baselines of a CORS network is provided to compare the AR performance of GF TCAR with that of IF TCAR. The results show that both methods can reliably resolve the WL ambiguity with a remarkable correctly-fixed rate of higher than 99%, and the reliably-fixed rates of the IF TCAR slightly increase from 92.19, 94.67 and 94.61–98.26, 99.54 and 97.51% for the three baselines. Herein “correctly-fixed” and “reliably-fixed” mean the difference between the float ambiguity and the true one are less than ± 0.5 and ± 0.25 cycles, respectively. On the other hand, the AR performance of the original signals with the IF TCAR method is much better than that with the GF TCAR method attaining a 100% correctly-fixed rate, while the GF TCAR method can hardly fix the original ambiguity with the largest bias being as much as 4 cycles because of the amplified systematic bias.  相似文献   
943.
Integrity monitoring for ambiguity resolution is of significance for utilizing the high-precision carrier phase differential positioning for safety–critical navigational applications. The integer bootstrap estimator can provide an analytical probability density function, which enables the precise evaluation of the integrity risk for ambiguity validation. In order to monitor the effect of unknown ambiguity bias on the integer bootstrap estimator, the position-domain integrity risk of the integer bootstrapped baseline is evaluated under the complete failure modes by using the worst-case protection principle. Furthermore, a partial ambiguity resolution method is developed in order to satisfy the predefined integrity risk requirement. Static and kinematic experiments are carried out to test the proposed method by comparing with the traditional ratio test method and the protection level-based method. The static experimental result has shown that the proposed method can achieve a significant global availability improvement by 51% at most. The kinematic result reveals that the proposed method obtains the best balance between the positioning accuracy and the continuity performance.  相似文献   
944.
Beidou satellites, especially geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites, need to be frequently maneuvered to keep them in position due to various perturbations. The satellite ephemerides are not available during such maneuver periods. Precise estimation of thrust forces acting on satellites would provide continuous ephemerides during maneuver periods and could significantly improve orbit accuracy immediately after the maneuver. This would increase satellite usability for both real-time and post-processing applications. Using 1 year of observations from the Multi-GNSS Experiment network (MGEX), we estimate the precise maneuver periods for all Beidou satellites and the thrust forces. On average, GEO and IGSO satellites in the Beidou constellation are maneuvered 12 and 2 times, respectively, each year. For GEO satellites, the maneuvers are mainly in-plane, while out-of-plane maneuvers are observed for IGSO satellites and a small number of GEO satellites. In most cases, the Beidou satellite maneuver periods last 15–25 min, but can be as much as 2 h for the few out-of-plane maneuvers of GEO satellites. The thrust forces acting on Beidou satellites are normally in the order of 0.1–0.7 mm/s2. This can cause changes in velocity of GEO/IGSO satellites in the order of several decimeters per second. In the extreme cases of GEO out-of-plane maneuvers, very large cross-track velocity changes are observed, namely 28 m/s, induced by 5.4 mm/s2 thrust forces. Also, we demonstrate that by applying the estimated thrust forces in orbit integration, the orbit errors can be estimated at decimeter level in along- and cross-track directions during normal maneuver periods, and 1–2 m in all the orbital directions for the enormous GEO out-of-plane maneuver.  相似文献   
945.
Multipath disturbance is one of the major error sources in high-accuracy positioning for global navigation satellite system (GNSS). Although various methods based on software and hardware strategies have been developed to mitigate this error, they are still limited by different kinds of factors and the effect is not ideal. After analyzing the existing methods, a new single-difference sidereal filtering method, based on adaptive thresholding wavelet denoising and double reference shift strategy (ATDR), is proposed to mitigate multipath effects for static short-baseline GNSS applications. The key idea of the proposed method is the use of both the adaptive thresholding wavelet denoising to extract an accurate multipath correction model from the reference Day and the double reference shift strategy to mitigate multipath for subsequent Day 2 more accurately and efficiently. By applying the introduced adaptive thresholding method, the average improvement rate of the RMS values of the single-difference residuals can reach about 15.82% compared with the constant thresholding method. Moreover, after applying the proposed ATDR method, the 3D positioning precision is improved by about 37.73% for the single epoch mode with 30 s data sampling rate and about 31.22% for the continuous mode with 1 s high sampling rate compared with the original results. Even compared with the constant thresholding single orbital reference (CTSR) method, the improvement percentage is about 33.94% in single epoch mode and about 25.40% in continuous mode for 3D positioning precision, respectively. In conclusion, the results of the two experiments indicate that the proposed ATDR method performs much better than the CTSR method in mitigating multipath for different sampling rates and different processing modes in the measurement domain for GNSS static short-baseline postprocessing applications.  相似文献   
946.
The calibration errors on experimental slant total electron content (TEC) determined with global positioning system (GPS) observations is revisited. Instead of the analysis of the calibration errors on the carrier phase leveled to code ionospheric observable, we focus on the accuracy analysis of the undifferenced ambiguity-fixed carrier phase ionospheric observable determined from a global distribution of permanent receivers. The results achieved are: (1) using data from an entire month within the last solar cycle maximum, the undifferenced ambiguity-fixed carrier phase ionospheric observable is found to be over one order of magnitude more accurate than the carrier phase leveled to code ionospheric observable and the raw code ionospheric observable. The observation error of the undifferenced ambiguity-fixed carrier phase ionospheric observable ranges from 0.05 to 0.11 total electron content unit (TECU) while that of the carrier phase leveled to code and the raw code ionospheric observable is from 0.65 to 1.65 and 3.14 to 7.48 TECU, respectively. (2) The time-varying receiver differential code bias (DCB), which presents clear day boundary discontinuity and intra-day variability pattern, contributes the most part of the observation error. This contribution is assessed by the short-term stability of the between-receiver DCB, which ranges from 0.06 to 0.17 TECU in a single day. (3) The remaining part of the observation errors presents a sidereal time cycle pattern, indicating the effects of the multipath. Further, the magnitude of the remaining part implies that the code multipath effects are much reduced. (4) The intra-day variation of the between-receiver DCB of the collocated stations suggests that estimating DCBs as a daily constant can have a mis-modeling error of at least several tenths of 1 TECU.  相似文献   
947.
The availability of miniaturized sensors with enhanced capabilities, new methods for image processing, and easy access to small and low-weight airborne platforms for data acquisition, including unmanned vehicles, opens new possibilities for geodetic navigation applications and developing new developments in sensor fusion. In this context, the development of efficient methods, based on low-cost sensors, to extract precise georeferenced information from digital cameras is of utmost interest. We present a method to improve the performance of the integration of GNSS/low-cost IMU by exploiting the orientation changes retrieved from digital images. In this work, a robust-adaptive Kalman filter is also introduced to further improve the performance of the method deployed. The adaptive factor and the robust factor accomplished are determined by innovation information and the threshold value of orientation changes between consecutive images. Results from airborne tests used to assess the performance of the method are presented. The results show that using a non-metric camera, the Euler angle estimation accuracy of the GNSS/low-cost IMU integration can be improved to be close to 0.5 degree and an additional improvement, which can reach 59%, can be achieved after using the robust-adaptive Kalman filter.  相似文献   
948.
Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as “The Internet of Things” solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.  相似文献   
949.
In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper’s initial stroke as it moves away from its neutral position. This phenomenon is referred to as the effect of “deadzone”. The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers. An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping if a deadzone is to be considered.  相似文献   
950.
Based on energy dissipation and structural control principle, a new structural configuration, called the mega- sub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号