首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   811篇
  免费   25篇
  国内免费   7篇
测绘学   12篇
大气科学   73篇
地球物理   118篇
地质学   254篇
海洋学   79篇
天文学   208篇
综合类   6篇
自然地理   93篇
  2021年   8篇
  2020年   7篇
  2019年   15篇
  2018年   12篇
  2017年   18篇
  2016年   18篇
  2015年   23篇
  2014年   13篇
  2013年   30篇
  2012年   14篇
  2011年   25篇
  2010年   26篇
  2009年   46篇
  2008年   35篇
  2007年   26篇
  2006年   28篇
  2005年   37篇
  2004年   20篇
  2003年   23篇
  2002年   20篇
  2001年   16篇
  2000年   23篇
  1999年   10篇
  1998年   16篇
  1997年   9篇
  1996年   6篇
  1995年   11篇
  1994年   11篇
  1993年   8篇
  1992年   13篇
  1990年   14篇
  1989年   15篇
  1988年   10篇
  1987年   13篇
  1986年   6篇
  1985年   18篇
  1984年   16篇
  1983年   12篇
  1982年   12篇
  1981年   10篇
  1980年   15篇
  1979年   20篇
  1978年   14篇
  1977年   11篇
  1976年   9篇
  1975年   10篇
  1974年   7篇
  1973年   14篇
  1972年   6篇
  1971年   6篇
排序方式: 共有843条查询结果,搜索用时 46 毫秒
111.
The scientific exploitation of adaptive optics (AO) with natural guide stars is severely constrained by the limited presence of bright guide stars for wavefront sensing. Use of a laser beam as an alternative means to provide a source for wavefront sensing has the potential of drastically improving the sky coverage for AO. For this reason at the 4.2-m William Herschel Telescope a project was started to develop a Rayleigh laser beacon to work together with the existing NAOMI adaptive optics instrumentation and the OASIS integral field spectrograph. This paper presents the rationale for this development, highlights some of the technical aspects, and gives some expected performance measures.  相似文献   
112.
Apparent polar wander in the mean-lithosphere (= no-net-rotation = no-net-torque uniform drag) reference frame is compared with apparent polar wander in the hotspot reference frame over the past 100 Myr. Palaeo-magnetic poles and plate rotations previously used to determine an apparent polar wander path for the hotspot reference frame are here used to determine an apparent polar wander path in the mean-lithosphere reference frame. We find that the two paths are similar, especially for Late Cretaceous time, when a 10°–20° shift of the pole occurred. To first-order the hotspots and lithosphere (as a whole) moved in unison relative to the palaeomagnetic axis during Late Cretaceous time. A non-dipole field explanation for the apparent shift can probably be excluded. However, either motion of the time-averaged geomagnetic axis relative to the spin axis or polar wandering could have caused this shift, the latter being the more likely explanation.  相似文献   
113.
Wang  Lingping  Song  Dongri  Zhou  Gordon G. D.  Chen  Xiao Qing  Xu  Min  Choi  Clarence E.  Peng  Peng 《Landslides》2022,19(8):1881-1896
Landslides - The multiple-barrier mitigation strategy in the debris-flow source area is an effective approach to inhibit debris-flow entrainment and scale amplification along the flow path....  相似文献   
114.
115.
Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne‐Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes.  相似文献   
116.
Abstract

The lower St Lawrence Estuary is an interesting case amongst estuaries in that it is wide enough to accommodate the development of mesoscale unstable waves and eddies. These features are generated by the runoff‐driven jet along this body's south shore. We present data yielding estimates of the length, time and velocity scales of these unstable disturbances. To relate these quantities to the dynamics we employ a 2‐layer quasigeos‐trophic instability model featuring realistic lateral shear. All model runs show short time and length scales, e‐folding periods of less than 10 days and wavelengths less than 50 km.  相似文献   
117.
We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.  相似文献   
118.
Krucker  Säm  Christe  Steven  Lin  R.P.  Hurford  Gordon J.  Schwartz  Richard A. 《Solar physics》2002,210(1-2):445-456
The excellent sensitivity, spectral and spatial resolution, and energy coverage down to 3 keV provided by the Reuven Ramaty High-Energy Solar Spectroscopic Imager mission (RHESSI) allows for the first time the detailed study of the locations and the spectra of solar microflares down to 3 keV. During a one-hour quiet interval (GOES soft X-ray level around B6) on 2 May, 1:40–2:40 UT, at least 7 microflares occurred with the largest peaking at A6 GOES level. The microflares are found to come from 4 different active regions including one behind the west limb. At 7′′ resolution, some events show elongated sources, while others are unresolved point sources. In the impulsive phase of the microflares, the spectra can generally be fitted better with a thermal model plus power law above ∼ 6–7 keV than with a thermal only. The decay phase sometimes can be fitted with a thermal only, but in some events, power-law emission is detected late in the event indicating particle acceleration after the thermal peak of the event. The behind-the-limb microflare shows thermal emissions only, suggesting that the non-thermal power law emission originates lower, in footpoints that are occulted. The power-law fits extend to below 7 keV with exponents between −5 and −8, and imply a total non-thermal electron energy content between 1026–1027 erg. Except for the fact that the power-law indices are steeper than what is generally found in regular flares, the investigated microflares show characteristics similar to large flares. Since the total energy in non-thermal electrons is very sensitive to the value of the power law and the energy cutoff, these observations will give us better estimates of the total energy input into the corona. (Note that color versions of figures are on the accompanying CD-ROM.) Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022404512780  相似文献   
119.
Abstract— The results of a systematic field mapping campaign at the Haughton impact structure have revealed new information about the tectonic evolution of mid‐size complex impact structures. These studies reveal that several structures are generated during the initial compressive outward‐directed growth of the transient cavity during the excavation stage of crater formation: (1) sub‐vertical radial faults and fractures; (2) sub‐horizontal bedding parallel detachment faults; and (3) minor concentric faults and fractures. Uplift of the transient cavity floor toward the end of the excavation stage produces a central uplift. Compressional inward‐directed deformation results in the duplication of strata along thrust faults and folds. It is notable that Haughton lacks a central topographic peak or peak ring. The gravitational collapse of transient cavity walls involves the complex interaction of a series of interconnected radial and concentric faults. While the outermost concentric faults dip in toward the crater center, the majority of the innermost faults at Haughton dip away from the center. Complex interactions between an outward‐directed collapsing central uplift and inward collapsing crater walls during the final stages of crater modification resulted in a structural ring of uplifted, intensely faulted (sub‐) vertical and/or overturned strata at a radial distance from the crater center of ?5.0–6.5 km. Converging flow during the collapse of transient cavity walls was accommodated by the formation of several structures: (1) sub‐vertical radial faults and folds; (2) positive flower structures and chaotically brecciated ridges; (3) rollover anticlines in the hanging‐walls of major listric faults; and (4) antithetic faults and crestal collapse grabens. Oblique strike‐slip (i.e., centripetal) movement along concentric faults also accommodated strain during the final stages of readjustment during the crater modification stage. It is clear that deformation during collapse of the transient cavity walls at Haughton was brittle and localized along discrete fault planes separating kilometer‐size blocks.  相似文献   
120.
We investigate the growth or decay rate of the fundamental mode of even symmetry in a viscous accretion disc. This mode occurs in eccentric discs and is known to be potentially overstable. We determine the vertical structure of the disc and its modes, treating radiative energy transport in the diffusion approximation. In the limit of very long radial wavelength, an analytical criterion for viscous overstability is obtained, which involves the effective shear and bulk viscosity, the adiabatic exponent, and the opacity law of the disc. This differs from the prediction of a two-dimensional model. On shorter wavelengths (a few times the disc thickness), the criterion for overstability is more difficult to satisfy because of the different vertical structure of the mode. In a low-viscosity disc a third regime of intermediate wavelengths appears, in which the overstability is suppressed as the horizontal velocity perturbations develop significant vertical shear. We suggest that this effect determines the damping rate of eccentricity in protoplanetary discs, for which the long-wavelength analysis is inapplicable and overstability is unlikely to occur on any scale. In thinner accretion discs and in decretion discs around Be stars overstability may occur only on the longest wavelengths, leading to the preferential excitation of global eccentric modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号