首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   26篇
  国内免费   7篇
测绘学   12篇
大气科学   73篇
地球物理   120篇
地质学   254篇
海洋学   80篇
天文学   233篇
综合类   6篇
自然地理   93篇
  2021年   8篇
  2020年   7篇
  2019年   15篇
  2018年   12篇
  2017年   18篇
  2016年   18篇
  2015年   24篇
  2014年   14篇
  2013年   30篇
  2012年   14篇
  2011年   25篇
  2010年   31篇
  2009年   46篇
  2008年   36篇
  2007年   26篇
  2006年   30篇
  2005年   38篇
  2004年   20篇
  2003年   23篇
  2002年   21篇
  2001年   19篇
  2000年   23篇
  1999年   10篇
  1998年   16篇
  1997年   9篇
  1995年   11篇
  1994年   11篇
  1993年   8篇
  1992年   13篇
  1990年   14篇
  1989年   15篇
  1988年   10篇
  1987年   13篇
  1986年   6篇
  1985年   18篇
  1984年   16篇
  1983年   12篇
  1982年   13篇
  1981年   10篇
  1980年   15篇
  1979年   23篇
  1978年   15篇
  1977年   11篇
  1976年   10篇
  1975年   10篇
  1974年   8篇
  1973年   14篇
  1972年   6篇
  1971年   6篇
  1969年   7篇
排序方式: 共有871条查询结果,搜索用时 672 毫秒
741.
Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5–10% in REE (Eu = 14%), 6–13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg‐normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are ~0.6 × CI with enriched La abundance (~0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass‐dependent isotope fractionation trend. Both groups show a ~slope‐1/2 line on a three‐isotope plot with subtle negative deviation in ?17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.  相似文献   
742.
Delineating hydrologic and pedogenic factors influencing groundwater flow in riparian zones is central in understanding pathways of water and nutrient transport. In this study, we combined two‐dimensional time‐lapse electrical resistivity imaging (ERI) (depth of investigation approximately 2 m) with hydrometric monitoring to examine hydrological processes in the riparian area of FD‐36, a small (0.4 km2) agricultural headwater basin in the Valley and Ridge region of east‐central Pennsylvania. We selected two contrasting study sites, including a seep with groundwater discharge and an adjacent area lacking such seepage. Both sites were underlain by a fragipan at 0.6 m. We then monitored changes in electrical resistivity, shallow groundwater, and nitrate‐N concentrations as a series of storms transitioned the landscape from dry to wet conditions. Time‐lapse ERI revealed different resistivity patterns between seep and non‐seep areas during the study period. Notably, the seep displayed strong resistivity reductions (~60%) along a vertically aligned region of the soil profile, which coincided with strong upward hydraulic gradients recorded in a grid of nested piezometers (0.2‐ and 0.6‐m depth). These patterns suggested a hydraulic connection between the seep and the nitrate‐rich shallow groundwater system below the fragipan, which enabled groundwater and associated nitrate‐N to discharge through the fragipan to the surface. In contrast, time‐lapse ERI indicated no such connections in the non‐seep area, with infiltrated rainwater presumably perched above the fragipan. Results highlight the value of pairing time‐lapse ERI with hydrometric and water quality monitoring to illuminate possible groundwater and nutrient flow pathways to seeps in headwater riparian areas.  相似文献   
743.
Roads have been widely studied as sources of runoff and sediment and identified as pollutant production sources to receiving waters. Despite the wealth of research on logging roads in forested, upland settings, little work has been conducted to examine the role of extensive networks of rural, low‐volume, unpaved roads on water quality degradation at the catchment scale. We studied a network of municipal unpaved roads in the northeastern US to identify the type and spatial extent of ‘hydro‐geomorphic impairments’ to water quality. We mapped erosional and depositional features on roads to develop an estimate of pollutant production. We also mapped the type and location of design interventions or best management practices (BMPs) used to improve road drainage and mitigate water quality impairment. We used statistical analyses to identify key controls on the frequency and magnitude of erosional features on the road network, and GIS to scale up from the survey results to the catchment scale to identify the likely importance of unpaved roads as a pollutant source in this setting. An average of 21 hydro‐geomorphic impairments were mapped per kilometer of road, averaging 0.3 m3 in volume. Road gradient and slope position were key controls on the occurrence of these features. The presence of BMPs effectively reduced erosion frequency. Scaled up to the watershed and using a conservative estimate of road–stream connectivity, our results for the Winooski River watershed in the northeastern US suggest that roughly 16% and 6% of the average annual sediment and phosphorus flux, respectively, of the Winooski River may be derived from unpaved roads. Our study identifies an under‐appreciated source of water quality degradation in rural watersheds, provides insights into identifying ‘hot spots’ of pollutant production associated with these networks, and points to effectiveness of design interventions in mitigating these adverse impacts on water quality. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
744.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   
745.
746.
Employing the simple iterative technique of adjusting the element positions using computed potentials to locate the free surface can lead to finite elements with large aspect ratios as the free surface drops towards the base of the mesh. In particular, free surface modelling of earth dams with base drains suffer from this problem. The paper suggests a number of steps which can be taken to alleviate mesh distortion problems and improve the numerical stability of the iterative finite element analysis. This leads to a mesh deformation algorithm which adjusts element widths in a simple fashion depending on the free surface height as the iterations proceed. The algorithm is specialized to the sloped earth dam problem, but may find application to other geometries. © 1997 by John Wiley & Sons, Ltd.  相似文献   
747.
The Dhofar 1673, Dhofar 1983, and Dhofar 1984 meteorites are three lunar regolith breccias classified based on their petrography, mineralogy, oxygen isotopes, and bulk chemistry. All three meteorites are dominated by feldspathic lithic clasts; however, impact melt rock clasts and spherules are also found in each meteorite. The bulk chemistry of these samples is similar to other feldspathic highland meteorites with the Al2O3 content only slightly lower than average. Within the lithic clasts, the Mg # of mafic phases versus the anorthite content of feldspars is similar to other highland meteorites and is found to plot intermediate of the ferroan‐anorthositic suite and magnesian suite. The samples lack any KREEPy signature and have only minor indications of a mare basalt component, suggesting that the source region of all three meteorites would have been distal from the Procellarum KREEP Terrane and could have possibly been the Feldspathic Highland Terrane. All three meteorites were found within 500 m of each other in the Dhofar region of Oman. This, together with their similar petrography, stable isotope chemistry, and geochemistry indicates the possibility of a pairing.  相似文献   
748.
749.
Seismic detection of faults, dykes, potholes and iron-rich ultramafic pegmatitic bodies is of great importance to the platinum mining industry, as these structures affect safety and efficiency. The application of conventional seismic attributes (such as instantaneous amplitude, phase and frequency) in the hard-rock environment is more challenging than in soft-rock settings because the geology is often complex, reflections disrupted and the seismic energy strongly scattered. We have developed new seismic attributes that sharpen seismic reflections, enabling additional structural information to be extracted from hard-rock seismic data. The symmetry attribute is based on the invariance of an object with respect to transformations such as rotation and reflection; it is independent of the trace reflection amplitude, and hence a better indicator of the lateral continuity of thin and weak reflections. The reflection-continuity detector attribute is based on the Hilbert transform; it enhances the visibility of the peaks and troughs of the seismic traces, and hence the continuity of weak reflections. We demonstrate the effectiveness of these new seismic attributes by applying them to a legacy 3D seismic data set from the Bushveld Complex in South Africa. These seismic attributes show good detection of deep-seated thin (∼1.5 m thick) platinum ore bodies and their associated complex geological structures (faults, dykes, potholes and iron-rich ultramafic pegmatites). They provide a fast, cost-effective and efficient interpretation tool that, when coupled with horizon-based seismic attributes, can reveal structures not seen in conventional interpretations.  相似文献   
750.
We adapted the dilution technique to study microzooplankton grazing of algal dimethylsulfoniopropionate (DMSP) vs. Chl a, and to estimate the impact of microzooplankton grazing on dimethyl sulfide (DMS) production in the Labrador Sea. Phytoplankton numbers were dominated by autotrophic nanoflagellates in the Labrador basin, but diatoms and colonial Phaeocystis pouchetii contributed significantly to phytomass at several high chlorophyll stations and on the Newfoundland and Greenland shelfs. Throughout the region, growth of algal Chl a and DMSP was generally high (0.2–1 d1), but grazing rates were lower and more variable, characteristic of the early spring bloom period. Production and consumption of Chl a vs. DMSP followed no clear pattern, and sometimes diverged greatly, likely because of their differing distributions among algal prey taxa and size class. In several experiments where Phaeocystis was abundant, we observed DMS production proportional to grazing rate, and we found clear evidence of DMS production by this haptophyte following physical stress such as sparging or filtration. It is possible that grazing-activated DMSP cleavage by Phaeocystis contributes to grazer deterrence: protozoa and copepods apparently avoided healthy colonies (as judged by relative growth and grazing rates of Chl a and DMSP), and grazing of Phaeocystis was significant only at one station where cells were in poor condition. Although we hoped to examine selective grazing on or against DMSP-containing algal prey, the dilution technique cannot differentiate selective ingestion and varying digestion rates of Chl a and DMSP. We also found that the dilution method alone was poorly suited for assessing the impact of grazing on dissolved sulfur pools, because of rapid microbial consumption and the artifactual release of DMSP and DMS during filtration. Measuring and understanding the many processes affecting organosulfur cycling by the microbial food web in natural populations remain a technical challenge that will likely require a combination of techniques to address.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号