排序方式: 共有40条查询结果,搜索用时 15 毫秒
31.
Significant oil and gas accumulations occur in and around Lougheed Island, Arctic Canada, where hydrocarbon prospectivity is controlled by potential source rock distribution and composition. The Middle to Upper Triassic rocks of the Schei Point Group (e.g. Murray Harbour and Hoyle Bay formations) contain a mixture of Types I and II organic matter (Tasmanales marine algae, amorphous fluorescing bituminite). These source rocks are within the oil generation zone and have HI values up to 600 mg HC/g Corg. The younger source rocks of the Lower Jurassic Jameson Bay and the Upper Jurassic Ringnes formations contain mainly gas-prone Type II/III organic matter and are marginally mature. Vitrinite reflectance profiles suggest an effective geothermal gradient essentially similar to the present-day gradient (20 to 30°C/km). Maturation gradients are low, ranging from 0.125 to 0.185 log%Ro/km. Increases in subsidence rate in the Early Cretaceous suggest that the actual heat flow history was variable and has probably diminished from that time. The high deposition rates of the Christopher Formation shales coincide with the main phase of rifting in Aptian-Albian times. Uplift and increased sediment supply in the Maastrichtian resulted in a new sedimentary and tectonic regime, which culminated in the final phase of the Eurekan Orogeny. Burial history models indicate that hydrocarbon generation in the Schei Point Group took place during rifting in Early Cretaceous, long before any Eurekan deformation. 相似文献
32.
Maturity and source rock potential of organic rich beds in the Triassic Schei Point Group in the Sverdrup Basin, Arctic Canada have been investigated using reflected light microscopy and the results are compared with other maturity parameters determined geochemically (i.e. Rock Eval, and biomarker maturation parameters). The samples evaluated belong to the Eden Bay Member of the Hoyle Bay Formation and contain a predominance of marine algal material, in the form of Tasmanales, and dinoflagellates, along with mixed terrestrial organics.The rock matrix is dominantly carbonate with some shaly input, indicating that the rocks were deposited in an iron-poor highly euxinic environment. With few exceptions there is good agreement between parameters,determined using microscopy; namely %Ro, λmax and
and geochemical parameters, Tmax, HI,
steranes,
C29 steranes. The ternary diagram showing the abundance of normalized C27, C28 and C29 regular steranes indicates a mostly marine depositional environment for the Schei Point source rock. This is confirmed by the abundance of marine fauna and flora in these samples.Analytical results from several different techniques indicate that the source rocks become more mature from the margin towards the axis of the Sverdrup Basin. This is due, in part, to the increase in overburden of sediments in the axis of the basin. Also the high thermal conductivity of salt has strongly influenced the maturity of Schei Point source rocks over the crest of the salt cored structures, i.e. Well Hazen F-54, and the proximity of salt has enhanced maturation levels at Well Rock Point J-43. The sections investigated were also considered to have an excellent gas potential due to their higher than average TOC content. 相似文献
Full-size image (<1K)
33.
Fariborz Goodarzi 《International Journal of Coal Geology》1985,4(4):321-334
Gell preserved monocotyledon and peeridophyta remains were found in natural bitumen frrm Iranian, tar pit and oil seeps, using reflected and fluorescence light microscopy. The plant tissue are impregnated or partially replaced by bitumens the extent of this replacement is noted. 相似文献
34.
F. Goodarzi D.A. Grieve H. Sanei T. Gentzis N.N. Goodarzi 《International Journal of Coal Geology》2009,77(3-4):246-259
The Elk Valley coalfield of British Columbia is one of the major coal producing areas in Canada. The coals are of Cretaceous and Jurassic–Cretaceous age and range in rank from high-volatile to low-volatile bituminous (%Romax: 0.8–1.6). Coal seams from outcrops and active mines in this coalfield were analysed for rank and maceral composition using reflected light microscopy, for geochemistry using AAS, INAA, and ICPES, and also by proximate and ultimate analyses. The Elk Valley coal seams contain low average concentrations of hazardous elements such as As, Mo, Pb, and Se. However, there are seams that contain relatively high concentrations of some of these elements, such as 8 mg/kg and 108 mg/kg of arsenic. When the geochemistry of coal seams is compared within the different parts of the coalfield, the elemental composition amongst the seams from various sections located in the central area of the coalfield is similar. Coal seams in the northern area of the coalfield have different geochemistry than coal seams in other areas of the coalfield; seams in the northern area have much higher As, Br, Cr, Cu, Fe, K, and Na content, but contain less Ca. 相似文献
35.
In this study, the impacts of climate change on crop water requirements and irrigation water requirements on the regional cropping pattern were evaluated using two climate change scenarios and combinations of 20 GCM models. Different models including CROPWAT, MODFLOW, and statistical models were used to evaluate the climate change impacts. The results showed that in the future period (2017 to 2046) the temperature in all months of the year will increase at all stations. The average annual precipitation decline in Isfahan, Tiran, Flavarjan, and Lenj stations for RCP 4.5 and RCP 8.5 scenarios are 18.6 and 27.6%, 15.2 and 18%, 22.5 and 31.5%, and 10.5 and 12.1%, respectively. The average increase in the evapotranspiration for RCP 4.5 and RCP 8.5 scenarios are about 2.5 and 4.1%, respectively. The irrigation water demands increases considerably and for some crops, on average 18%. Among the existing crops in the cropping pattern, barley, cumin, onion, wheat, and forage crops are more sensitive and their water demand will increase significantly. Results indicate that climate change could have a significant impact on water resources consumption. By considering irrigation efficiency in the region, climate change impacts will result in about 35 to 50 million m3/year, over-extraction from the aquifer. This additional exploitation causes an extra drop of 0.4 to 0.8 m in groundwater table per year in the aquifer. Therefore, with regard to the critical condition of the aquifer, management and preventive measures to deal with climate change in the future is absolutely necessary. 相似文献
36.
Mineralogical and elemental variation of coal from Alberta, Canada: an example from the No. 2 seam, Genesee Mine 总被引:2,自引:0,他引:2
Mineralogy and elemental contents were determined on 18 samples from a vertical profile of the No. 2 seam, Genesee mine, AB. The samples analyzed consist of coal, coaly shale, shaly coal, carbonaceous shale, shale, mudstone and siltstone. Proximate analysis was determined on all samples. Elemental analyses were determined by instrumental neutron activation analysis (INAA) for all elements except As, B, Cd, Hg, Mo, Pb, Se (Atomic Absorption) and B, Ba, Be, Co, Cr, Cu, Li, Mn, Nb, Sr and V (inductively coupled plasma-emission spectroscopy, ICP-ES). Samples were low temperature ashed (LTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF) were used to determine quantitative major mineralogy. Accessory mineralogy was determined with Scannining Electron microscope/energy dispersive X-ray analyzer (SEM/EDX) on four samples. In general, the coals in the Genesee mine are within the low end of the range for trace element contents given by Swaine [Swaine, D.J., 1990. Trace Elements in Coal. Butterworths, London, 278 pp.] for most coals. High contents of Cr (9–2620 ppm) and Ni (1–1440 ppm) can be related to an increased amount of a Cr–Ni–Fe oxide (chromite–magnetite?) likely derived from ultrabasic diatremes in the Golden-Columbia Icefields, BC area. The No. 2 seam of the Genesee mine can be divided into two geochemical cycles on the basis of mineralogy, trace element contents and rare earth element (REE) behavior. Cycle I consists of quartz, calcite and kaolinite, lower trace element contents, REE slightly enriched in high rare earth elements (HREE), and thick coal with few partings. Cycle II consists of quartz, calcite, kaolinite, illite, mixed layer and/or expandable lattice clays, feldspar, gypsum, calcium aluminum sulfate hydrate, clinoptilolite, calcite and diopside, higher trace element contents, REE slightly enriched in light rare earth elements (LREE) and thin coal with a greater frequency of partings. The differences between the two geochemical cycles can be accounted for by a decreasing stability of the peat-forming environment resulting from an increasing fluvial influence and volcanogenic input. 相似文献
37.
Environmental assessment of elements and polyaromatic hydrocarbons emitted from a Canadian coal-fired power plant 总被引:1,自引:0,他引:1
A detailed assessment of elements was carried out at a power plant rated at approximately 760 MW of electricity using western Canadian subbituminous coal. The concentrations of elements of environmental concern (As, Cd, Cr, Hg, Ni, and Pb) in milled coals, ashes, stack-emitted materials. Speciation of As, Cr, and Ni were determined. The polyaromatic hydrocarbons (PAHs) emitted from the stack were also measured. The rates of input of elemental input for As, Cd, Cr, Hg, Ni, and Pb were 28, 0.94, 230, 0.44, 44, and 88 kg/day, respectively; of which only 0.16, 0.01, 0.40, 0.27, 0.15, and 0.04 kg/day, respectively, were stack emitted. The total stack emission of toxic elements is 1.02 kg/day, with Cr being the highest contributor to this group with 0.4 kg/day. However, Hg at 0.27 kg/day has the highest percentage rate of emission at about 60%, while Cd has the lowest at about 1%. The electrostatic precipitator (ESP) removes a significant portion of the elements indicated by their relative enrichment (RE) ratios greater than 0.7. The results show that most of the elements in milled coal are low compared to world coals and other Canadian milled coals.Mercury is mostly ( 81%) emitted as gaseous elemental mercury (GEM), with 19% as reactive gaseous mercury (RGM). Particulate mercury is very low and averages about 0.1% of the total mercury at this station. Most of the arsenic in the milled coal is primarily associated with pyrite or as arsenate in its less toxic form of As+5 (> 95%). In both bottom and fly ashes, more than 95% of the total arsenic is present as As+5. Chromium in the milled coal and bottom ash is mostly non-toxic (Cr+3). The more toxic Cr+6 comprise less than 5% of the total Cr in the ESP fly ash and the stack-emitted ash. Nickel in milled coal and ashes is in the form of non-toxic Ni+2, predominantly in coordination with oxygen.The emitted PAHs include acenapthene, fluorene, 2-methyl-fluorene, phenathrene, anthracene, fluoanthene, and pyrene; which are emitted from stack at the combined rate of 3.6 g/day. The concentrations of elements of environmental concern (As, Cd, Hg, Ni, and Pb) emitted to the atmosphere by the power plant in the zone of maximum impact at ground level are lower than those listed in the Health Guidelines of the USEPA and Canadian National Air Pollution Surveillance. This is based on stable meteorological conditions, down wind from the power plant for a maximum distance of 3 km. 相似文献
38.
Dispersion of reflectances in air and oil between 400 and 700 nm of a suiteof scolecodont concentrates with known Conodont Alteration Index was determined using a reflected light microscope. Refractive and absorptive indices of these scolecodonts were calculated using their determined reflectances.Morphologically, scolecodonts in carbonate show similar granular morphology to that of graptolites. Fine structural details of scolecodonts can be observed under reflected light.Reflectances, refractive and absorptive indices of scolecodonts at 546 nm increase with increase of the Conodont Alteration Index, indicating that these properties of scolecodonts can be used to determine the maturity of sediments.Dispersion of the optical properties of scolecodonts follows similar trends to those for vitrinite, natural bitumen and graptolites, indicating similar molecular structural changes with increasing maturity. 相似文献
39.
The purpose of the study is to better understand the relationship between organic matter optical properties and the presence of potentially large oil and gas accumulations in Arctic Canada. The type and thermal maturity of the dispersed organic matter of the Mesozoic formations in the southern Sverdrup Basin, Melville Island, have been studied using organic petrology and Rock-Eval pyrolysis.All types of organic matter are present in the strata of Mesozoic age. Hydrogen-rich liptinite is dominated by alginite (Botryococcus and Tasmanites), dinoflagellate cysts and amorphous fluorescing matrix. Sporinite, cutinite, resinite and liptodetrinite made up the lesser hydrogen-rich exinite. Vitrinite reflectance in Cretaceous sediments ranges from 0.36 to 0.65% Ro; in Jurassic sediments it ranges from 0.40 to 1.0% Ro and in the Triassic from 0.45 to 1.30% Ro, showing an overall increase with depth of burial.Cretaceous sediments of the Deer Bay Formation are thermally immature and contain organic matter of terrestrial origin. The Upper Jurassic shales of the Ringnes Formation contain predominantly organic matter of liptinitic and exinitic origin with a considerable vitrinitic input. At optimum maturation levels, potential source beds of this formation would have a good hydrocarbon-generating potential. The hydrocarbon potential, however, would be limited to the generation of gases due to the leanness of the source rocks. Parts of the Lower Jurassic Jameson Bay Formation are organic-rich and contain a mixed exinitic/vitrinitic organic matter, Botryococcus colonial algae but visible organic matter is dominated by high plant remains (mainly spores). The Schei Point Group shales and siltstones contain organic matter of almost purely marine origin, whereas the predominantly higher plant-derived organic matter found in the Deer Bay, Jameson Bay and partly in the Ringnes formations have higher TOC. Among the Schei Point Group samples, the Cape Richards and Eden Bay members of the Hoyle Bay Formation are richer in TOC (>2.0%) than the Murray Harbour Formation (Cape Caledonia Member). This may reflect differences in the level of maturity or in the depositional environment (more anoxic conditions for the former).Regional variations in the level of thermal maturity of Mesozoic sediments in Sverdrup Basin appear to be a function of burial depth. The Mesozoic formations thicken towards the basin centre (NNE direction), reflecting the general pattern of increasing thermal maturity north of Sabine Peninsula. However, the regional thermal-maturation pattern of the Mesozoic is not solely a reflection of the present-day geothermal gradient, which indicates that anomalous zones of high geothermal gradient may have existed in the past, at least since when the Mesozoic sediments attained maximum burial depth. The contour pattern of the regional variation of maturity at the base of numerous Triassic formations is similar to that of the structural contours of the Sverdrup Basin, indicating that present-day maturation levels are largely controlled by basin subsidence. 相似文献
40.
The source of the oil at Norman Wells has long been assumed to have been the Canol Formation and/or the Bluefish Member of the Hare Indian Formation. These two units are stratigraphically above and below the Kee Scarp Formation reservoir unit respectively, and are both bituminous shales. A wide range of analytical techniques including Rock-Eval pyrolysis, solvent extraction and fractionation, capillary gas chromatography, gas chromatography-mass spectrometry, and white light and fluorescence microscopy has been used to characterize core samples of these two units and two samples of crude oil from the Norman Wells field.Most of the analytical techniques were insufficiently refined to either differentiate the extracts from each other or to make a definitive oil/source rock correlation. Collision activated decomposition coupled with multiple ion detection mass spectrometry (GC-MS-MS) did provide sufficient chemical compositional detail of the oils and the two potential sources to demonstrate that the Canol Formation has been the effective source of the Norman Wells oil whereas the Bluefish Member has not. Petrological analysis of the organic fractions also indicates that although the bulk organic composition of both units may be classified as Type II organic matter, significant differences exist between them. The Bluefish Member contains substantial amounts of megaspores, whereas the organic matter in the Canol Formation is largely phytoplankton debris.The level of thermal maturity of the core samples ranges from immature to moderately mature in the vicinity of the Norman Wells field to overmature for the samples obtained to the west and north of the field. The level of thermal maturity of the oil was observed to be somewhat higher than that of the samples of the source formation directly above the field. It was thus inferred that some lateral migration from more mature areas has occurred but the extent of this migration was not necessarily more than a few to tens of kilometers. 相似文献