首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
  国内免费   1篇
测绘学   3篇
大气科学   2篇
地球物理   25篇
地质学   28篇
海洋学   5篇
综合类   1篇
自然地理   1篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   9篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1982年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
11.
Novel approaches to the dynamic analysis of the reinforced soil walls have been reported in the literature. Use of marginal soils reduces the cost of geosynthetic reinforced soil walls if proper drainage measures are taken. Therefore the affect of using cohesive marginal soils as backfill in geosynthetic reinforced retaining structures were investigated in this research. The dynamic response of reinforced soil walls was investigated in a similar focus, using finite element analysis. The results obtained from walls with cohesive backfill were compared to the results obtained from walls with granular backfill. The height of the wall was chosen as 6 m in the two-dimensional plane strain finite element model and the base acceleration was chosen to be a harmonic motion. The effects of various parameters like the backfill type, facing type, reinforcement stiffness, and peak ground acceleration on the cyclic response of reinforced soil retaining walls were investigated. After analyzing the wall response for end of construction and dynamic excitation phases, it was determined that the deformations and reinforcement tensile loads increased during the cyclic load application and that the amount of additional deformation that occurred during cyclic load application was strongly related to backfill soil type, facing type, reinforcement type and peak ground acceleration. It was determined that a cohesive backfill and geotextile reinforcement was a good combination to reduce the deformations of geosynthetic reinforced walls during cyclic loading for medium height walls.  相似文献   
12.
Rainfall data are a fundamental input for effective planning, designing and operating of water resources projects. A well‐designed rain gauge network is capable of providing accurate estimates of necessary areal average and/or point rainfall estimates at any desired ungauged location in a catchment. Increasing network density with additional rain gauge stations has been the main underlying criterion in the past to reduce error and uncertainty in rainfall estimates. However, installing and operation of additional stations in a network involves large cost and manpower. Hence, the objective of this study is to design an optimal rain gauge network in the Middle Yarra River catchment in Victoria, Australia. The optimal positioning of additional stations as well as optimally relocating of existing redundant stations using the kriging‐based geostatistical approach was undertaken in this study. Reduction of kriging error was considered as an indicator for optimal spatial positioning of the stations. Daily rainfall records of 1997 (an El Niño year) and 2010 (a La Niña year) were used for the analysis. Ordinary kriging was applied for rainfall data interpolation to estimate the kriging error for the network. The results indicate that significant reduction in the kriging error can be achieved by the optimal spatial positioning of the additional as well as redundant stations. Thus, the obtained optimal rain gauge network is expected to be appropriate for providing high quality rainfall estimates over the catchment. The concept proposed in this study for optimal rain gauge network design through combined use of additional and redundant stations together is equally applicable to any other catchment. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
13.
Abstract

There is increasing concern that flood risk will be exacerbated in Antalya, Turkey as a result of global-warming-induced, more frequent and intensive, heavy rainfalls. In this paper, first, trends in extreme rainfall indices in the Antalya region were analysed using daily rainfall data. All stations in the study area showed statistically significant increasing trends for at least one extreme rainfall index. Extreme rainfall datasets for current (1970–1989) and future periods (2080–2099) were then constructed for frequency analysis using the peaks-over-threshold method. Frequency analysis of extreme rainfall data was performed using generalized Pareto distribution for current and future periods in order to estimate rainfall intensities for various return periods. Rainfall intensities for the future period were found to increase by up to 23% more than the current period. This study contributed to better understanding of climate change effects on extreme rainfalls in Antalya, Turkey.  相似文献   
14.
In this paper, an experimental study on the cut depth, which is an important cutting performance indicator in the abrasive waterjet (AWJ) cutting of rock, was presented. Taguchi experimental design of an orthogonal array was employed to conduct the experiments. A variety of nine types of granitic rocks were used in the cutting experiments. The experimental data were used to assess the influence of AWJ operating variables on the cut depth. Using regression analysis, models for prediction of the cut depth from the operating variables and rock properties in AWJ machining of granitic rocks were then developed and verified. The results indicated that the cut depths decreased with increasing traverse speed and decreasing abrasive size. On the other hand, increase of the abrasive mass flow rate and water pressure led to increases in the cut depths. Additionally, it was observed that the standoff distance had no discernible effects on the cut depths. Furthermore, from the statistical analysis, it was found that the predictive models developed for the rock types had potential for practical applications. Verification of the models for using them as a practical guideline revealed a high applicability of the models within the experimental range used.  相似文献   
15.
Two gravity cores (CAG-3 and C-15) from the tectonically active, 1,276-m deep Çınarcık Basin of the Marmara Sea each include three sandy turbiditic mud units (1 mm–2 cm thick) with sharp basal contacts. The high benthic foraminifer content of these units suggests that the sediments were transported by turbidity currents from the upper slope region. These units represent the thin edges of turbidites thickening towards the subsiding north-eastern part of the basin, and contain quartz, detrital calcite, intact shells and shell fragments, smectite, pyrite framboids, muscovite, biotite, epidote and garnet. Their clay fractions are more enriched in smectite than those of adjacent layers. AMS 14C ages (957±43 a.d. and 578±31 a.d.) of two upper and middle turbiditic units in core C15 overlap with the historical İstanbul-Thrace (intensity=10) and İstanbul-Kocaeli (intensity=9) earthquakes of 26 October 986 and 15 August 553, respectively. This overlap, together with sedimentological characteristics, strongly suggests that the turbiditic units are related to the tectono-seismic activity of the North Anatolian Fault. The age of the lowest turbiditic unit in core C-3 was found to be 6,573±87 a b.p. (calendar) by AMS 14 C. In terms of chronostratigraphic relationships and lithological composition, the turbiditic units in core CAG-3 cannot be correlated with those in C15. This can be explained by gravity-controlled sedimentation causing wedging out of turbidites towards the edge of the basin.  相似文献   
16.
Yildirim  Gokhan  Rahman  Ataur 《Natural Hazards》2022,111(1):305-332
Natural Hazards - An understanding on different aspects of droughts is crucial for effective water resources management. Australia has experienced notable droughts in recent years. The present...  相似文献   
17.
Yildirim  Gokhan  Rahman  Ataur 《Natural Hazards》2022,112(2):1657-1683
Natural Hazards - This study investigates rainfall and drought characteristics in southeastern Australia (New South Wales and Victoria) using data from 45 rainfall stations. Four homogeneity tests...  相似文献   
18.
An Erratum has been published for this article in Earthquake Engineering and Structural Dynamics 2000; 29(7):1076. Two interrelated issues related to the design of non-linear viscous dampers are considered in this paper: structural velocities and equivalent viscous damping. As the effectiveness of non-linear viscous dampers is highly dependent on operating velocities, it is important to have reliable estimates of the true velocity in the device. This should be based on the actual relative structural velocity and not the commonly misused spectral pseudo-velocity. This is because if spectral pseudo-velocities (PSV) are used, they are based on design displacements (Sv=ω0Sd) and are thus fundamentally different from the actual relative structural velocity. This paper examines the difference between these two velocities, and based on an extensive study of historical earthquake motions proposes empirical relations that permit the designer to transform the well-known spectral pseudo-velocity to an actual relative structural velocity for use in design. Non-linear static analysis procedures recommended in current guidelines for the design of structural systems with supplement damping devices are based on converting rate-dependent device properties into equivalent viscous damping properties based on an equivalent energy consumption approach. Owing to the non-linear velocity dependence of supplemental devices, an alternative approach for converting energy dissipation into equivalent viscous damping is advanced in this paper that is based upon power consumption considerations. The concept of a normalized damper capacity (ϵ) is then introduced and a simple design procedure which incorporates power equivalent linear damping based on actual structural velocities is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
19.
Rainfall data in continuous space provide an essential input for most hydrological and water resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging has become a widely used interpolation method to estimate the spatial distribution of climate variables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic (inverse distance weighting, radial basis function) interpolation methods for enhanced spatial interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catchment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the catchments during 1980–2012 period are used for the analysis. A digital elevation model of each catchment is used as the supplementary information in addition to rainfall for the OCK and kriging with an external drift methods. The prediction performance of the adopted interpolation methods is assessed through cross‐validation. Results indicate that the geostatistical methods outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate that among the geostatistical methods, the OCK method is found to be the best interpolator for estimating spatial rainfall distribution in both the catchments with the lowest prediction error between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can significantly enhance the estimation of rainfall over a catchment.  相似文献   
20.
Turkey confronts loss of life and large economic losses due to natural disasters caused by its morphologic structure, geographical placement, and climate characteristics. The Kuzulu (Koyulhisar) landslide, which caused loss of life and property on 17th March 2005, occurred in an area near the country’s most important active fault, the North Anatolian Fault Zone. To mitigate and prevent landslide damages, prediction of landslide susceptibility areas based on probabilistic methods has a great importance. The purpose of this study was to produce a landslide susceptibility map by the logistic regression and frequency ratio methodologies for a 733-km2 area near the North Anatolian Fault Zone from the southeast of Niksar to Resadiye in Tokat province. Conditioning parameters, such as elevation, slope gradient, slope aspect, distance to streams, roads, and faults, drainage density, and fault density, were used in the analysis. Before susceptibility analysis, the landslides observed in the area were separated into two groups for use in analysis and verification, respectively. The susceptibility maps produced had five different susceptibility classes such as very low, low, moderate, high, and very high. To test the performance of the susceptibility maps, area under curve (AUC) approach was used. For the logistic regression method, the AUC value was 0.708; while for the frequency rate method, this value was 0.744. According to these AUC values, it could be concluded that the two landslide susceptibility maps obtained were successful.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号