首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   9篇
测绘学   3篇
大气科学   2篇
地球物理   43篇
地质学   45篇
海洋学   10篇
天文学   8篇
自然地理   6篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   9篇
  2017年   2篇
  2016年   3篇
  2015年   20篇
  2014年   9篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   8篇
  2008年   10篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   3篇
  1998年   1篇
  1997年   3篇
  1993年   1篇
  1985年   1篇
  1983年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
91.
The Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta‐shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km2 large coarse‐grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow‐water areas and reworked clasts of the Orfento Formation itself. In the near mud‐free succession, age‐diagnostic fossils are sparse. The depositional textures vary from wackestone to float‐rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex‐upward breccias, cross‐cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high‐energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine‐grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea‐level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current‐controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift.  相似文献   
92.
In this study, the joint deconvolution is applied to recordings of three test cases located in the cities of Bishkek, Kyrgyzstan, Istanbul, Turkey, and Mexico City, Mexico. Each test case consists of a building equipped with sensors and a nearby borehole installation in order to investigate different cases of coupling (impedance contrasts) between the building and the soil by analyzing the wave propagation through the building-soil-layers, and hence resolving the soil–structure-interactions. The three installations considering different dynamic characteristics of buildings and soil, and thus, different building-soil couplings, are investigated. The seismic input (i.e., the part of the wave field containing only the up-going waves after removing all down-going waves) and the part of the wave field that is associated with the waves radiated back from the building are separated by using the constrained deconvolution. The energy being radiated back from the building to the soil has been estimated for the three test cases. The values obtained show that even at great depths (and therefore distances), the amount of wave field radiated back by the building to the soil is significant (e.g., for the Bishkek case, at 145 m depth, 10% of the estimated real input energy is expected to be emitted back from the building; for Istanbul at 50 m depth, the value is also 10–15% of the estimated real input energy while for Mexico City at 45 m depth, it is 25–65% of the estimated real input energy). Such results confirm the active role of buildings in shaping the wave field.  相似文献   
93.
94.
This paper presents a geological–structural study of some Neogene hinterland basins of the Northern Apennines, located on the Tyrrhenian side of the chain. These basins developed on the already delineated thrust-fold belt from middle–late Tortonian times. Their evolution has been commonly referred to an extensional tectonic regime, related to the opening of the Tyrrhenian Sea. New data have allowed us to hypothesize a different tectonic evolution for the chain, where compressive tectonics plays a major role both in the external and in the hinterland area. In this frame, the hinterland area located west of a major outcropping crustal thrust (Mid-Tuscany Metamorphic Ridge) has been the target of a geological–structural investigation. The field mapping and structural analysis has been focused on the syntectonic sediments of the Radicondoli–Volterra basin as well as on adjoining minor basins. These basins commonly display a synclinal structure and are generally located in between basement culminations, probably corresponding to thrust anticlines. Sediments of the hinterland basins have been affected by compressive deformation and regional unconformities separate stratigraphic units due to the activity of basement thrusts. In the study area, normal faulting either accommodates the thrusting processes or post-dates compressive deformation. A chronology of faulting and a six-stage evolution of this area are presented, providing further insights for the Neogene tectonic evolution of the Northern Apennines. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   
95.
In this study, we analyse the susceptibility to liquefaction of the Pozzone site, which is located on the northern side of the Fucino lacustrine basin in central Italy. In 1915, this region was struck by a M 7.0 earthquake, which produced widespread coseismic surface effects that were interpreted to be liquefaction-related. However, the interpretation of these phenomena at the Pozzone site is not straightforward. Furthermore, the site is characterized by an abundance of fine-grained sediments, which are not typically found in liquefiable soils. Therefore, in this study, we perform a number of detailed stratigraphic and geotechnical investigations (including continuous-coring borehole, CPTu, SDMT, SPT, and geotechnical laboratory tests) to better interpret these 1915 phenomena and to evaluate the liquefaction potential of a lacustrine environment dominated by fine-grained sedimentation. The upper 18.5 m of the stratigraphic succession comprises fine-grained sediments, including four strata of coarser sediments formed by interbedded layers of sand, silty sand and sandy silt. These strata, which are interpreted to represent the frontal lobes of an alluvial fan system within a lacustrine succession, are highly susceptible to liquefaction. We also find evidence of paleo-liquefaction, dated between 12.1–10.8 and 9.43–9.13 kyrs ago, occurring at depths of 2.1–2.3 m. These data, along with the aforementioned geotechnical analyses, indicate that this site would indeed be liquefiable in a 1915-like earthquake. Although we found a broad agreement among CPTu, DMT and shear wave velocity “simplified procedures” in detecting the liquefaction potential of the Pozzone soil, our results suggest that the use and comparison of different in situ techniques are highly recommended for reliable estimates of the cyclic liquefaction resistance in lacustrine sites characterized by high content of fine-grained soils. In geologic environments similar to the one analysed in this work, where it is difficult to detect liquefiable layers, one can identify sites that are susceptible to liquefaction only by using detailed stratigraphic reconstructions, in situ characterization, and laboratory analyses. This has implications for basic (Level 1) seismic microzonation mapping, which typically relies on the use of empirical evaluations based on geologic maps and pre-existing sub-surface data (i.e., age and type of deposits, prevailing grain size, with particular attention paid to clean sands, and depth of the water table).  相似文献   
96.
97.
98.
We present a new spectroscopic sample of 11 quasars at intermediate redshift observed with the Infrared Spectrometer and Array Camera (ISAAC) on the ESO Very Large Telescope (VLT), covering O i λ8446 and the Ca ii triplet 8498, 8542, 8662. The new observations – that supplement the sample presented by Martínez-Aldama et al. (2015) – allow us to confirm the constraints on physical conditions and location of the region emitting the low ionization lines, as well as the relation between Ca ii and Fe ii.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号