首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   1篇
测绘学   2篇
大气科学   6篇
地球物理   8篇
地质学   65篇
海洋学   26篇
天文学   2篇
自然地理   5篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   11篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   7篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1989年   1篇
  1988年   5篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1973年   2篇
  1971年   1篇
  1966年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
11.
Systematic trends in the geometry of 149 oxide and 80 sulfide binary and ternary spinels have been examined from the standpoint of ionic radius and electronegativity. The mean ionic radii of the octahedral and tetrahedral cations, taken together, account for 96.9 and 90.5% of the variation in the unit cell parameter, a, of the oxides and sulfides, respectively, with the octahedral cation exerting by far the dominant influence in sulfides. The mean electronegativity of the octahedral cation exerts an additional, but small, influence on the cell edge of the sulfides. The equation a=(8/3√d)d tet+(8/3)d oct, where d tet and d oct are the tetrahedral and octahedral bond lengths obained from the sum of the ionic radii, accounts for 96.7 and 83.2% of the variation in a in the oxides and sulfides, respectively, again testifying to the applicability of the hard-sphere ionic model in the case of the spinel structure. Comparison of observed and calculated u values for 94 spinels indicates that up to 40% of the experimentally measured anion coordinates may be significantly in error. In addition to these compounds, u values are given for 52 spinels for which no data have previously been determined. Diagrams are presented for the rapid interpretation of the internal consistency of published data and the prediction of the structural parameters of hypothetical or partially studied spinels.  相似文献   
12.
The Spaceborne Laser Ranging System is a proposed short pulse laser on board an orbiting spacecraft.1,2,3,4 It measures the distance between the spacecraft and many laser retroreflectors (targets) deployed on the Earth’s surface. The precision of these range measurements is assumed to be about ±2 cm (M. W. Fitzmaurice, private communication). These measurements are then used together with the orbital dynamics of the spacecraft, to derive the relative position of the laser ground targets. Assuming a six day observing period with 50% cloud cover, uncertainties in the baseline for target separations of 50 km to 1200 km were estimated to be on the order of 1 to 3 cm and the corresponding values in the vertical direction, ranged from 1 cm to 12 cm. By redetermining the measurements of the relative target positions, the estimated precision in the baseline for a target separation of 50 km is less than 0.3 cm and for a separation of 1200 km is less than 1 cm. In the vertical direction, the estimated precision ranged from 0.4 cm to 4.0 cm respectively. As a result of the repeated estimation of the relative laser target positions, most of the non-temporal effects of error sources as exemplified by the errors in geopotential are reduced. The Spaceborne Laser Ranging System’s capability of determining baselines to a high degree of precision provides a measure of strain and strain rate as shown byCohen, 1979. These quantities are essential for crustal dynamic studies which include determination and monitoring of strain near seismic zones, land subsidence, and edifice building preceding volcanic eruptions. It is evident that such a system can also be used for geodetic surveys where such precisions are more than adquate.  相似文献   
13.
Ab initio STO-3G molecular orbital theory has been used to calculate energy-optimized Si-O bond lengths and angles for molecular orthosilicic and pyrosilicic acids. The resulting bond length for orthosilicic acid and the nonbridging bonds for pyrosilicic acid compare well with Si-OH bonds observed for a number of hydrated silicate minerals. Minimum energy Si-O bond lengths to the bridging oxygen of the pyrosilicic molecule show a close correspondence with bridging bond length data observed for the silica polymorphs and for gas phase and molecular crystal siloxanes when plotted against the SiOSi angle. In addition, the calculations show that the mean Si-O bond length of a silicate tetrahedron increases slightly as the SiOSi angle narrows. The close correspondence between the Si-O bond length and angle variations calculated for pyrosilicic acid and those observed for the silica polymorphs and siloxanes substantiates the suggestion that local bonding forces in solids are not very different from those in molecules and clusters consisting of the same atoms with the same coordination numbers. An extended basis calculation for H4SiO4 implies that there are about 0.6 electrons in the 3d-orbitals on Si. An analysis of bond overlap populations obtained from STO-3G* calculations for H6Si2O7 indicates that Si-O bond length and SiOSi angle correlations may be ascribed to changes in the hybridization state of the bridging oxygen and (dp) π-bonding involving all five of the 3d AO's of Si and the lone-pair AO's of the oxygen. Theoretical density difference maps calculated for H6Si2O7 show a build-up of charge density between Si and O, with the peak-height charge densities of the nonbridging bonds exceeding those of the bridging bonds by about 0.05 e Å?3. In addition, atomic charges (+1.3 and ?0.65) calculated for Si and O in a SiO2 moiety of the low quartz structure conform reasonably well with the electroneutrality postulate and with experimental charges obtained from monopole and radial refinements of diffraction data recorded for low quartz and coesite.  相似文献   
14.
Extended Hückel molecular orbital theory (EHT) and simple, approximate Self-Consistent-Field MO methods are employed to explain the geometries of nontransition metal bearing minerals and inorganic compounds. The spectra of such minerals and the electronic structure of transition metal oxidic minerals are explained using the Self-Consistent-Field X α MO method. EHT provides an objective algorithm for rationalizing and correlating bond length and angle data for insular and polymerized TO 4 ?n tetrahedral oxyanions where T=Be, B, Al, Si, P, S, Ge, As and Se. Calculated bond overlap populations n(T-O), correlate linearly with the observed T-O bond lengths with shorter bonds tending to involve larger n(T-O) values. Such calculations show that n(T-O) is strongly dependent upon the average of the three O-T-O angles associated with a common bond, larger n(T-O) values involving wider angles. Calculations of n(T-O) as a function of the T-O-T angles in T 2O 7 ?n ions, indicate that the n(T-O) values for the bonds to the bridging oxygen atoms increase nonlinearly with increasing T-O-T angle whereas those the nonbridging oxygens decrease slightly as the angle widens. In agreement with the experimental data, these results predict that shorter T-O bonds should involve wider O-T-O and T-O-T angles. The SCF-X α MO cluster model is then applied to silica and FeO. The calculations yield a satisfactory interpretation of the visible, UV and X-ray emission and X-ray photoelectron spectra of these materials. Theoretical and empirical MO diagrams are constructed and the electronic structures of the materials are discussed.  相似文献   
15.
The Greater Caucasus is Europe's largest mountain belt. Significant uncertainties remain over the evolution of the range, largely due to a lack of primary field data. This work demonstrates that depositional systems within the Oligocene–Early Miocene Maykop Series on either side of the Western Greater Caucasus (WGC) display a similar provenance and divergent palaeocurrents away from the range, constraining a minimum age for the subaerial uplift of the range as early Early Oligocene. An Eocene–Oligocene hiatus, basal Oligocene olistostromes and a marked increase in nannofossil reworking also point to initial deformation in the earliest Oligocene. The initial uplift of the WGC occurred during the final assembly of the Tethysides to its south. Uplift commenced after the Late Eocene final suturing of northern Neotethys and during the initial collision of Arabia with the southern accreted margin of Eurasia. This suggests that compressional deformation was rapidly transferred across the collision zone from the indenting Arabian plate to its northern margin.  相似文献   
16.
17.
The release of phosphorus (P) from the sediments of eutrophic lakes is often associated with the proliferation of nuisance algal blooms, especially cyanobacteria. The successful implementation of management actions aimed at reducing such algal blooms requires an integrated approach, including both external and internal nutrient loads. The internal load of P can be a significant source of P for primary production, with greatest inputs occurring when lakes stratify and the hypolimnetic waters become anoxic. We reviewed the nature and characteristics of New Zealand lakes in relation to factors which affect the application of technologies to manage internal P loads within individual lakes. New Zealand's windy maritime climate causes lakes to mix more deeply than lakes in continental areas, which are characterised by relatively hot, calm summers. We assessed a range of management options which may be used to control internal P loads, and considered these in a de cision‐support framework aimed at identifying the key factors which may limit successful application. Methods to reduce P release from sediments include: physical approaches—such as artificial destratification, hypolimnetic aeration, enhanced lake flushing, and dredging/discing; and geochemical approaches—such as the application of alum and iron as flocculation agents, and other products as “capping” materials. The capping materials may be either a passive physical barrier (e.g., sand, gravel, clay) or an active barrier. The active barrier systems are generally pervious chemical or geochemical materials capable of binding contaminants by adsorption or precipitation processes. A decision‐support and risk assessment framework is provided to assist managers in the development of appropriate strategies for reducing or controlling internal P loads, and thus cyanobacteria blooms. A review of the sediment characteristics of lakes in the Taupo volcanic zone showed marked variability in sediment P content, and elevated geothermal arsenic concentrations in some lake sediments, which may affect the efficacy of chemical capping agents, indicating that site‐specific consideration of capping agent dose is required.  相似文献   
18.
The power law regression equation, <R(M–O)> = 1.46(<ρ(r c)>/r)?0.19, relating the average experimental bond lengths, <R(M–O)>, to the average accumulation of the electron density at the bond critical point, <ρ(r c)>, between bonded pairs of metal and oxygen atoms (r is the row number of the M atom), determined at ambient conditions for oxide crystals, is similar to the regression equation R(M–O) = 1.41(ρ(r c)/r)?0.21 determined for three perovskite crystals at pressures as high as 80 GPa. The pair are also comparable with the equation <R(M–O)> = 1.43(<s>/r)?0.21 determined for oxide crystals at ambient conditions and <R(M–O)> = 1.39(<s>/r)?0.22 determined for geometry-optimized hydroxyacid molecules that relate the geometry-optimized bond lengths to the average Pauling bond strength, <s>, for the M–O bonded interactions. On the basis of the correspondence between the equations relating <ρ(r c)> and <s> with bond length, it seems plausible that the Pauling bond strength might serve a rough estimate of the accumulation of the electron density between M–O bonded pairs of atoms. Similar expressions, relating bond length and bond strength hold for fluoride, nitride and sulfide molecules and crystals. The similarity of the expressions for the crystals and molecules is compelling evidence that molecular and crystalline M–O bonded interactions are intrinsically related. The value of <ρ(r c)> = r[(1.41)/<R(M–O)>]4.76 determined for the average bond length for a given coordination polyhedron closely matches the Pauling’s electrostatic bond strength reaching each the coordinating anions of the coordinated polyhedron. Despite the relative simplicity of the expression, it appears to be more general in its application in that it holds for the bulk of the M–O bonded pairs of atoms of the periodic table.  相似文献   
19.
20.
This paper explores some of the key institutional transformations in livestock breeding associated with the increasing significance of genetic techniques, situating this within an assessment of an emerging agricultural bioeconomy. Focusing on beef cattle and sheep breeding in the United Kingdom, the paper examines how a move towards the involvement of international and corporate interests in livestock breeding is restructuring the network of institutional interests affecting the knowledge and decision making of individual breeders. The paper suggests that the structural transformation of beef cattle and sheep breeding is complicated by the need for negotiation between breeders’ ‘traditional’ knowledge-practices and the ‘geneticised’ techniques being made available to them. We are thus seeing the emergence of new and complex interactions between the major actors which are reconfiguring power relationships in the UK livestock breeding sector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号