首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   32篇
地质学   64篇
海洋学   8篇
天文学   21篇
综合类   2篇
自然地理   9篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   10篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   5篇
  2011年   12篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1998年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1953年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
71.
Structural investigations in northwestern Sardinia highlight the occurrence of a regional D2 transpressional deformation related both to NNE–SSW direction of compression and to a NW–SE shear displacement. The deformation is continuous and heterogeneous, showing a northward strain increase, indicated by progressively tighter folds and occurrence of F2 sheath folds. D2 transpression is characterised by the presence of a crustal-scale shear deformation overprinting previous D1 structures, related to nappe stacking and top-to-the-south and southwest thrusting. The L2 prominent stretching lineation points to an orogen-parallel extension and to a change in the tectonic transport from D1 to D2. It is attributed to the position of Sardinia close to the northeastern part of the Cantabrian indenter during the progressive evolution of the Ibero-Armorican Arc. D1 phase developed during initial frontal collision, whereas D2 deformation characterised the progressive effect of horizontal displacement during the increasing curvature of the arc. To cite this article: R. Carosi, G. Oggiano, C. R. Geoscience 334 (2002) 287–294.  相似文献   
72.
The complex development of the northern Crotone Basin, a forearc basin of the Calabrian Arc (Southern Italy), has been documented by sedimentological, stratigraphic and structural analyses. This Mediterranean‐type fault bounded basin consists of small depocentres commonly characterized by a mix of facies that grades from continental to shallow marine. The lower Pliocene infill of the Crotone Basin consists of offshore marls (Cavalieri Marl) that grade upwards into a shallow‐marine to continental succession up to 850 m thick (Zinga Formation). The succession is subdivided into three main stratal units: Zinga 1, Zinga 2, Zinga 3 bounded by major unconformities. The Zinga 1 stratal unit grades from the Cavalieri Marl to deltaic and shoreface deposits, the latter organized into several stacked progradational wedges that show spectacular thickness changes and progressive unconformities related to salt‐cored NE‐trending growth folds and listric normal faults. The Zinga 2 stratal unit records a progressive and moderate deepening of the area, marked by fluvial sedimentation at the base, followed by lagoonal deposits and by a stacking of mixed bioclastic and siliciclastic shoreface units, organized into metre‐scale high‐frequency cycles. Deposition was controlled by NE‐trending synsedimentary normal faults that dissected the basin into a series of half‐grabens. Hangingwall stratigraphic expansion was compensated by footwall condensed sedimentation. The extensional tectonic regime continued during sedimentation of the Zinga 3 stratal unit. Deposition confined within structural lows during a generalized transgressive phase led to local enhancement of tidal flows and development of sand‐wave trains. The tectonic setting testifies the generalized structural domain of a forearc region. The angular unconformity at the top of the Zinga 3 stratal unit is regional, and marks the activation of a large‐scale tectonic phase linked to strike‐slip movements.  相似文献   
73.
The contact between the Silurian black phyllite and the Cambro–Ordovician underlying rocks has been investigated over different tectonic units, affected by green-schist facies metamorphism, in the inner nappe zone of the Sardinia Variscides. In spite of strain and metamorphism, the field work highlighted the occurrence of diamictic sediments. In the Canaglia Tectonic Unit the diamictite consists of dark, massive metamorphic claystone bearing chamositic ooliths, chamositic nodules and millimetre to centimetre sized clasts, dispersed, or gathered in clusters, within the muddy matrix. In the Argentiera Tectonic Unit the diamictite consists of angular clasts, ranging in size from few millimetres to several decimetres, scattered within a finely laminated black sericitic meta-argillite. Field data, textural and compositional analyses suggest a glacio-marine environment for the formation of the diamictites.

The Canaglia diamictite deposited in a protected, glacial-influenced, shore. Compositionally it can be defined as ironstone; in the Upper part it hosts a horizon of clast-supported conglomeratic hard ironstone, mostly made of magnetite, which testifies for sub-aerial reworking. The source of the iron is to be related to local, glacio-eustatic driven, emergence of Upper Ordovician alkaline mafic volcanics. These are widespread in the uppermost Ordovician of the Canaglia Unit, possibly linked to the rifting stage that invested the north Gondwana margin, before the uppermost Ordovician–early Silurian sea level rise.

The Argentiera diamictite deposited beyond the iron-rich diamictite in the outer euxinic shelf that was reached by rain out of rafted debris.  相似文献   

74.
Modelling the extension of heterogeneous hot lithosphere   总被引:2,自引:0,他引:2  
The consequences of weak heterogeneities in the extension of soft and hot lithosphere without significant previous crustal thickening has been analysed in a series of centrifuge models. The experiments examined the effects of i) the location of heterogeneities in the ductile crust and/or in the lithospheric mantle, and ii) their orientation, perpendicular or oblique to the direction of bulk extension. The observed deformation patterns are all relevant to the so-called “wide rifting” mode of extension. Weak zones located in the ductile crust exert a more pronounced influence on localisation of deformation in the brittle layer than those located in the lithospheric mantle: the former localise faulting in the brittle crust whereas the latter tend to distribute faulting over a wider area. This latter behaviour depends in turn upon the decoupling provided by the ductile crust. Localised thinning in the brittle crust is accompanied by ductile doming of both crust and mantle. Domains of maximum thinning in the brittle crust and ductile crust and mantle are in opposition. Lateral differences in brittle crust thinning are accommodated by lateral flow in the ductile crust and mantle. This contrasts with “cold and strong” lithospheres whose high strength sub-Moho mantle triggers a necking instability at the lithosphere-scale. This also differs from the extension of thickened hot and soft lithospheres whose ductile crust is thick enough to give birth to metamorphic core complexes. Thus, for the given lithospheric rheology, the models have relevance to backarc type extensional systems, such as the Aegean and the Tyrrhenian domains.  相似文献   
75.
Bauxite deposits are widespread in NW Sardinia. They formed during the middle Cretaceous, in consequence of a period of emergence of the Mesozoic carbonate shelf. In the Nurra area the geometries derived by the Middle Cretaceous tectonic phases controlled the ore typologies. Two bauxite profiles, laying on different bedrocks, were sampled. The bauxitization proceeded from the surface downward, with the accumulation of Al2O3 and residual ‘immobile’ elements (Al, Ti, HFSE), and corresponding mobility and loss of SiO2 and Fe2O3. Epigenetic kaolinite formed close to faults and joints, probably as a result of silicification, introduced by low temperature hydrothermal solutions. Rare earth elements, especially LREE, are concentrated in Fe-rich bauxite horizons, probably due to scavenging by goethite. REE-enrichment is not observed in the boehmite-rich horizons. Very high REE contents are observed in a Fe-depleted horizon due to the occurrence of REE accessory minerals, probably of the bastnäsite group. Conservative indices, including TiO2/Al2O3 and Ti/Cr ratios, and Eu anomalies (Eu/Eu*), suggest that the deposits formed by weathering of sediments derived from mafic rocks of the Hercynian basement. This, in turn, implies that the basement was exposed during middle Cretaceous.  相似文献   
76.
The late Hercynian tectonic evolution of the Calabria crust is characterized by peak metamorphic conditions up to 800 °C and 1000 MPa, and coeval mid‐crustal granitoid emplacement at 304–300 Ma. To check if a post‐collisional extensional framework, similar to that of other Hercynian massifs, can explain petrologic data, we model the pressure–temperature evolution of the crust during extension following granitoid emplacement. Model parameters are constrained by petrologic, geochemical and structural data. Computed PT paths are characterized by nearly isothermal decompression followed by isobaric cooling, which show a good fit to petrologic PT paths for duration of extension between 5 and 10 Ma. The model results, therefore, support an interpretation of the magmatic and metamorphic evolution of the Calabria crust in terms of the late Hercynian extension. In this framework, slab break‐off is a reasonable explanation for the common evolution of the southern European Hercynian massifs.  相似文献   
77.
In many coastal regions throughout the world, there is increasing pressure to harden shorelines to protect human infrastructures against sea level rise, storm surge, and erosion. This study examines waterbird community integrity in relation to shoreline hardening and land use characteristics at three geospatial scales: (1) the shoreline scale characterized by seven shoreline types: bulkhead, riprap, developed, natural marsh, Phragmites-dominated marsh, sandy beach, and forest; (2) the local subestuary landscape scale including land up to 500 m inland of the shoreline; and (3) the watershed scale >500 m from the shoreline. From 2010 to 2014, we conducted waterbird surveys along the shoreline and open water within 21 subestuaries throughout the Chesapeake Bay during two seasons to encompass post-breeding shorebirds and colonial waterbirds in late summer and migrating and wintering waterfowl in late fall. We employed an Index of Waterbird Community Integrity (IWCI) derived from mean abundance of individual waterbird species and scores of six key species attributes describing each species’ sensitivity to human disturbance, and then used this index to characterize communities in each subestuary and season. IWCI scores ranged from 14.3 to 19.7. Multivariate regression model selection showed that the local shoreline scale had the strongest influence on IWCI scores. At this scale, percent coverage of bulkhead and Phragmites along shorelines were the strongest predictors of IWCI, both with negative relationships. Recursive partitioning revealed that when subestuary shoreline coverage exceeded thresholds of approximately 5% Phragmites or 8% bulkhead, IWCI scores decreased. Our results indicate that development at the shoreline scale has an important effect on waterbird community integrity, and that shoreline hardening and invasive Phragmites each have a negative effect on waterbirds using subestuarine systems.  相似文献   
78.
The headwaters of many rivers are characterized by gullies and incised streams that generate significant volumes of sediment and degrade downstream water quality. These systems are characterized by harsh climates, ephemeral flows that do not reach bank top, and bare cohesive banks of clay and weathered bedrock. We investigated the rates and processes of bank erosion in an incised canal that has such characteristics. Detailed measurements of bank position were made over two years with a purpose‐built groundprofiler and photo‐electronic erosion pins (PEEPs). Stage height and turbidity were also monitored. The bare banks eroded at 13 ± 2 mm a−1. Erosion is controlled by subaerial processes that loosen bank material. Observations show that needle‐ice growth is important in winter and desiccation of clays predominates in summer. Flows are unable to erode firm cohesive clays from the banks, and erosion is generally limited by the availability of loosened material. This produces strong hysteresis in turbidity during events. Peak turbidity is related to the number of days with low flow between events, and not peak stage. Rehabilitation with a moderate cover of grass is able to prevent bank erosion by limiting the subaerial erosion processes. Projections of current erosion suggest that without vegetation cover the banks are unlikely to stabilize for many years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
79.
The present investigation examines possible optical counterparts to 130 X-ray sources in the region of the α Persei open cluster (d ∽ 170pc, age ∽ 50 Myr) resulting from the analysis of three 22–25 ksec ROSAT PSPC pointings. In the same manner as for 73 X-ray sources from a raster survey in α Per (Prosser & Randich 1998), CCD photometry is employed to obtain magnitudes and colors for stars/objects close to the X-ray positions, with additional echelle and low-dispersion Hα spectra provided for some stars. For almost 60 X-ray sources, an optical counterpart with photometry acceptable for cluster membership is identified, some of which can be excluded from membership on the basis of discrepant radial velocity or X-ray characteristics. On the order of 30 new members or likely members associated with X-ray sources have been identified based on available data. A photometric rotation period has been obtained for one rapid rotator identified in X-rays.  相似文献   
80.
To characterize seafloor substrate type, seabed mapping and particularly multibeam echosounding are increasingly used. Yet, the utilisation of repetitive MBES-borne backscatter surveys to monitor the environmental status of the seafloor remains limited. Often methodological frameworks are missing, and should comprise of a suite of change detection procedures, similarly to those developed in the terrestrial sciences. In this study, pre-, ensemble and post-classification approaches were tested on an eight km2 study site within a Habitat Directive Area in the Belgian part of the North Sea. In this area, gravel beds with epifaunal assemblages were observed. Flourishing of the fauna is constrained by overtopping with sand or increased turbidity levels, which could result from anthropogenic activities. Monitoring of the gravel to sand ratio was hence put forward as an indicator of good environmental status. Seven acoustic surveys were undertaken from 2004 to 2015. The methods allowed quantifying temporal trends and patterns of change of the main substrate classes identified in the study area; namely fine to medium homogenous sand, medium sand with bioclastic detritus and medium to coarse sand with gravel. Results indicated that by considering the entire study area and the entire time series, the gravel to sand ratio fluctuated, but was overall stable. Nonetheless, when only the biodiversity hotspots were considered, net losses and a gradual trend, indicative of potential smothering, was captured by ensemble and post-classification approaches respectively. Additionally, a two-dimensional morphological analysis, based on the bathymetric data, suggested a loss of profile complexity from 2004 to 2015. Causal relationships with natural and anthropogenic stressors are yet to be established. The methodologies presented and discussed are repeatable and can be applied to broad-scale geographical extents given that broad-scale time series datasets become available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号