首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   5篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   21篇
地质学   50篇
海洋学   7篇
天文学   19篇
综合类   2篇
自然地理   5篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1980年   1篇
  1953年   1篇
排序方式: 共有112条查询结果,搜索用时 281 毫秒
101.
Giacomo Corti   《Earth》2009,96(1-2):1-53
The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea–Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres.The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north–northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated.The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE–SW) and the Late Pliocene (post 3.2 Ma)-recent extensional stress field generated by relative motion between Nubia and Somalia plates (roughly ESE–WNW) suggest that oblique rifting conditions have controlled rift evolution. However, it is still unclear if these kinematical boundary conditions have remained steady since the initial stages of rifting or the kinematics has changed during the Late Pliocene or at the Pliocene–Pleistocene boundary.Analysis of geological–geophysical data suggests that continental rifting in the MER evolved in two different phases. An early (Mio-Pliocene) continental rifting stage was characterised by displacement along large boundary faults, subsidence of rift depression with local development of deep (up to 5 km) asymmetric basins and diffuse magmatic activity. In this initial phase, magmatism encompassed the whole rift, with volcanic activity affecting the rift depression, the major boundary faults and limited portions of the rift shoulders (off-axis volcanism). Progressive extension led to the second (Pleistocene) rifting stage, characterised by a riftward narrowing of the volcano-tectonic activity. In this phase, the main boundary faults were deactivated and extensional deformation was accommodated by dense swarms of faults (Wonji segments) in the thinned rift depression. The progressive thinning of the continental lithosphere under constant, prolonged oblique rifting conditions controlled this migration of deformation, possibly in tandem with the weakening related to magmatic processes and/or a change in rift kinematics. Owing to the oblique rifting conditions, the fault swarms obliquely cut the rift floor and were characterised by a typical right-stepping arrangement. Ascending magmas were focused by the Wonji segments, with eruption of magmas at surface preferentially occurring along the oblique faults. As soon as the volcano-tectonic activity was localised within Wonji segments, a strong feedback between deformation and magmatism developed: the thinned lithosphere was strongly modified by the extensive magma intrusion and extension was facilitated and accommodated by a combination of magmatic intrusion, dyking and faulting. In these conditions, focused melt intrusion allows the rupture of the thick continental lithosphere and the magmatic segments act as incipient slow-spreading mid-ocean spreading centres sandwiched by continental lithosphere.Overall the above-described evolution of the MER (at least in its northernmost sector) documents a transition from fault-dominated rift morphology in the early stages of extension toward magma-assisted rifting during the final stages of continental break-up. A strong increase in coupling between deformation and magmatism with extension is documented, with magma intrusion and dyking playing a larger role than faulting in strain accommodation as rifting progresses to seafloor spreading.  相似文献   
102.
Mapping Mercury's internal magnetic field with a magnetometer in closed orbit around the planet will provide valuable information about its internal structure. By measuring magnetic field multipoles of order higher than the dipole we could, in principle, determine some properties, such as size and location, of the internal source. Here we try to quantify these expectations. Using conceptual models, we simulate the actual measurement during the BepiColombo mission, and then we analyze the simulated data in order to estimate the measurement errors due to the limited spatial sampling. We also investigate our ability to locate the field generating current system within the planet. Finally, we address the main limitation of our model, due to the presence of time-varying external magnetospheric currents.  相似文献   
103.
Magma-induced strain localization in centrifuge models of transfer zones   总被引:1,自引:0,他引:1  
Scaled centrifuge experiments have been used to investigate the dynamic relations between deformation and magma distribution in rift-related transfer zones. The physical models were built using suitable analogue materials, such as sand to represent the brittle upper crust, various kinds of silicone mixtures to simulate the lower crust and upper mantle and glycerol to reproduce magma. Models simulated the development of transfer zones across pre-existing glycerol reservoirs placed at the base of the analogue continental crust. In plan view, different geometries, dimensions and positions of subcrustal reservoirs were reproduced in three different sets of experiments; to compare results, models were also performed without magma-simulating glycerol.Set 1 experiments, incorporating a narrow rectangular glycerol reservoir, show that the low-viscosity material is able to localise deformation into the overlying crust, giving rise to discrete transfer zones. This concentrated surface deformation corresponds at depth to major magma accumulation. Set 2 experiments, with an initial wide squared glycerol reservoir, show instead that deformation is distributed across the whole model surface, corresponding at depth to relatively minor magma accumulation. Set 3 experiments explored various positions of a small squared reservoir that invariably localised faulting in the overlying analogue brittle crust at the onset of model deformation.The overall model behaviour suggests that magma distribution at depth can effectively control the strain distribution in the overlying crust and the deformative pattern of transfer zones. Strain distribution, in turn, may control magma emplacement as localized deformation would favour major accumulation of magma at transfer zones. Coupled to a strong thermal weakening of the country rocks, this process may ultimately lead to a positive feedback interaction between magma and deformation.  相似文献   
104.
On June 19, 1996, an extremely heavy rainstorm hit a restricted area in the Apuan Alps (northwestern Tuscany, Italy). Its max intensity concentrated over an area of about 150 km2 astride the Apuan chain, where 474 mm was recorded in about 12 h (21% of the mean annual precipitation, with an intensity up to 158 mm/h). The storm caused floods and hundreds of landslides and debris flows, which produced huge damage (hundreds of millions of Euros), partially destroyed villages and killed 14 people. This paper reports the results obtained from a detailed field survey and aerial view interpretation. In the most severely involved area, 647 main landslides were investigated, mapped and related to the geologic, geomorphic and vegetational factors of the source areas. This was in order to define the influence of these factors and contribute to an evaluation of the landslide hazard in the study area. An assessment was also made of the total area and volume of material mobilised by landsliding. The study area, about 46 km2 wide, includes three typically mountainous basins, characterised by narrow, deep cut valleys and steep slopes, where many rock types outcrop. Most of the landslides were shallow and linear, referable to complex, earth and debris translational slide, which quickly developed into flow (soil slip–debris flow). Usually, they involved colluvium and started in hollows underlain by metamorphic rock (metasandstone and phyllite), often dipping downslope. Therefore, bedrock lithology and impermeability appeared to be important factors in the localisation of the landslide phenomena. The investigation of the geomorphic and land use features in the source areas also frequently highlighted a rectilinear profile of the slope, a high slope gradient (31–45°) and dense chestnut wood cover. In the area, about 985,000 m2 (2.1% of 46 km2) was affected by landsliding and about 700,000 m2 of this area was covered by chestnut forest. The landslides removed about 7000 trees. The volume of mobilised material was about 1,360,000 m3; about 220,000 m3 remained on the slopes, while the rest poured into the streams. In addition, about 945,000 m3 was mobilised by the torrential erosion in the riverbeds.  相似文献   
105.
The Nurra district in the Island of Sardinia (Italy) has a Palaeozoic basement and covers, consisting of Mesozoic carbonates, Cenozoic pyroclastic rocks and Quaternary, mainly clastic, sediments. The faulting and folding affecting the covers predominantly control the geomorphology. The morphology of the southern part is controlled by the Tertiary volcanic activity that generated a stack of pyroclastic flows. Geological structures and lithology exert the main control on recharge and groundwater circulation, as well as its availability and quality. The watershed divides do not fit the groundwater divide; the latter is conditioned by open folds and by faults. The Mesozoic folded carbonate sequences contain appreciable amounts of groundwater, particularly where structural lows are generated by synclines and normal faults. The regional groundwater flow has been defined. The investigated groundwater shows relatively high TDS and chloride concentrations which, along with other hydrogeochemical evidence, rules out sea-water intrusion as the cause of high salinity. The high chloride and sulphate concentrations can be related to deep hydrothermal circuits and to Triassic evaporites, respectively. The source water chemistry has been modified by various geochemical processes due to the groundwater–rock interaction, including ion exchange with hydrothermal minerals and clays, incongruent solution of dolomite, and sulphate reduction.  相似文献   
106.
During the first phase of Huygens arrival into Titan's atmosphere the probe is subjected to gravitational and aerodynamic forces in aerodynamic hypersonic regime. Atmospheric drag exerts a strong deceleration on the capsule measured by Huygens atmospheric structure instrument (HASI) servo accelerometer. A 6 DOF (Degree of Freedom) model of the Huygens probe entry dynamics has been developed and used for data analysis. The accelerometer data are analysed and the model allows the retrieval of dynamics information of Huygens probe from 1545 km altitude down to end of the entry phase. Probe's initial conditions (velocity and position) were refined to match the measured deceleration profile resulting in a different altitude at interface epoch with respect to those of the Cassini Navigation Team. Velocity and position of probe at interface epoch are compatible with those used by Descent Trajectory Working Group (DTWG).Measurements acquired before atmosphere detection are used to estimate probe's angular rate, bound attitude and characterise the angle of attack profile which results to be lower than 4° during the whole entry. Probe's spin calculated (6.98 RPM) is slightly different with respect to DTWG of 7.28 RPM but considering a 2% error in the Inertia matrix these results are inside the 1-σ error band.  相似文献   
107.
Geological, geophysical and geotechnical investigations, for the characterization of the strong-motion recording sites managed by the Italian Civil Protection, have been carried out in the framework of the project “Italian strong-motion database in the period 1972–2004”. The project aimed at creating an updated database of strong-motion data acquired in Italy by different institutions in the time span 1972–2004, and at improving the quality of disseminated data. This article illustrates the state of the recording site characterization before the beginning of the project, explains the criteria adopted to select the sites where geophysical/geotechnical investigation have been performed and describes the results of the promoted field surveys.  相似文献   
108.
Based on a revision of stratigraphic and structural data relative to the Balearic basin, the Corsica-Sardinia massif, the Northern Tyrrhenian Sea and the Northern Apennines the following new hypothesis is proposed for the area located between the Sardinian-Corsican-Provençal and Northern Apennines regions: (a) convergence with subduction of oceanic crust under the Iberian plate beginning in the Late Cretaceous; (b) continental collision in the Oligocene-Aquitanian, with development of the Northern Apennines belt and transpressive deformation in a hinterland that consisted of the Corsica-Sardinia massif (still attached to the Iberian plate); (c) in the Burdigalian the tectonic regime changed from compressive to extensional. During this period the Corsica-Sardinia massif migrated contemporaneously with opening of the Balearic basin, the Sardinian rift, and the Northern Tyrrhenian sea; (d) from the Burdigalian to the present, there was contemporaneous compression at the front and extension at the back of the Northern Apennines chain; both these features progressively migrated toward the east. The coeval extension and compression is attributed to lithospheric delamination toward the external part of the belt.  相似文献   
109.
The Calomini hermitage is located on a steep slope, below an 80- to 130-m-high hanging rock wall. The hermitage, a significant example of religious architecture, has been a pilgrimage place since the Middle Ages. The monastery, completed by the tenth century, is built into the rock mass for more than half of its length. The stability and safety of the complex are threatened by stability problems in the rock slope. Structural and geotechnical investigations were carried out, showing the potential for rock blocks slides, particularly under dynamic conditions, with the fall of middle size blocks. Recently, some remedial works have been carried out, and wire meshes have been hung on the rock wall. Nevertheless, a significant portion of the Calomini hermitage area may be still dangerous and exposed to severe landslide hazard. Therefore, further research and countermeasures are necessary to protect a very important item of Italian cultural and architectural heritage.  相似文献   
110.
The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in the presence of heterogeneous land cover. In particular, the effects of turbulence on scalar transport and the different behaviour of passive (e.g. water vapour) versus active (e.g. temperature) scalars may lead to large uncertainties in the source area/flux-footprint estimation for sensible (H) and latent (LE) heat-flux fields. This study uses large-eddy simulation (LES) of the land–atmosphere interactions to investigate the atmospheric boundary-layer (ABL) processes that are likely to create differences in airborne-estimated H and LE footprints. We focus on 32~m altitude aircraft flux observations collected over a study site in central Oklahoma during the Southern Great Plains experiment in 1997 (SGP97). Comparison between the aircraft data and traditional model estimates provide evidence of a difference in source area for turbulent sensible and latent heat fluxes. The LES produces reasonable representations of the observed fluxes, and hence provides credible evidence and explanation of the observed differences in the H and LE footprints. Those differences can be quantified by analyzing the change in the sign of the spatial correlation of the H and LE fields provided by the LES model as a function of height. Dry patterns in relatively moist surroundings are able to generate strong, but localized, sensible heating. However, whereas H at the aircraft altitude is still in phase with the surface, LE presents a more complicated connection to the surface as the dry updrafts force a convergence of the surrounding moist air. Both the observational and LES model evidence support the concept that under strongly advective conditions, H and LE measured at the top of the surface layer (≈50 m) can be associated with very different upwind source areas, effectively contradicting surface-layer self-similarity theory for scalars. The results indicate that, under certain environmental conditions, footprint models will need to predict differing source area/footprint contributions between active (H) and passive (LE) scalar fluxes by considering land-surface heterogeneity and ABL dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号