首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24397篇
  免费   171篇
  国内免费   916篇
测绘学   1410篇
大气科学   1977篇
地球物理   4497篇
地质学   11587篇
海洋学   1002篇
天文学   1631篇
综合类   2161篇
自然地理   1219篇
  2020年   1篇
  2018年   4761篇
  2017年   4037篇
  2016年   2576篇
  2015年   233篇
  2014年   80篇
  2013年   24篇
  2012年   988篇
  2011年   2728篇
  2010年   2014篇
  2009年   2310篇
  2008年   1888篇
  2007年   2360篇
  2006年   52篇
  2005年   194篇
  2004年   402篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
381.
The interannual variations of intensity of the Madden-Julian Oscillation (MJO) during boreal winter are investigated by using the observed outgoing longwave radiation (OLR) and the reanalysis data of ECMWF and NCEP. The standard deviation of 20-80-day filtered OLR anomaly is used to measure the MJO intensity. The dominant spatial structure of the interannual variability is revealed by an EOF analysis of the MJO intensity field. It is found that the leading mode is associated with eastern Pacific type ENSO, whereas the second mode is related to central Pacific type ENSO. A simple atmospheric model is used to investigate the relative roles of background moisture and wind changes in affecting the overall strength of MJO. The numerical experiments indicate that the background moisture effect is dominant while the background wind change has a minor effect.  相似文献   
382.
A timescale decomposed threshold regression(TSDTR) downscaling approach to forecasting South China early summer rainfall(SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR.The two models are developed based on the partial least squares(PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915–84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation(PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985–2006, compared to other simpler approaches. This study suggests that the TSDTR approach,considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.  相似文献   
383.
The author “Bhaski Bhaskaran” and his affiliation “Fujitsu Laboratory of Europe, Middlesex, UK” should be replaced by “Balakrishnan Bhaskaran”, “Fujitsu Laboratories of Europe Limited, Hayes Park, Middlesex, UK”, respectively.The corrected name and affiliation are shown in this erratum.  相似文献   
384.
As the 2018 Winter Olympics are to be held in Pyeongchang, both general weather information on Pyeongchang and specific weather information on this region, which can affect game operation and athletic performance, are required. An ensemble prediction system has been applied to provide more accurate weather information, but it has bias and dispersion due to the limitations and uncertainty of its model. In this study, homogeneous and nonhomogeneous regression models as well as Bayesian model averaging (BMA) were used to reduce the bias and dispersion existing in ensemble prediction and to provide probabilistic forecast. Prior to applying the prediction methods, reliability of the ensemble forecasts was tested by using a rank histogram and a residualquantile-quantile plot to identify the ensemble forecasts and the corresponding verifications. The ensemble forecasts had a consistent positive bias, indicating over-forecasting, and were under-dispersed. To correct such biases, statistical post-processing methods were applied using fixed and sliding windows. The prediction skills of methods were compared by using the mean absolute error, root mean square error, continuous ranked probability score, and continuous ranked probability skill score. Under the fixed window, BMA exhibited better prediction skill than the other methods in most observation station. Under the sliding window, on the other hand, homogeneous and non-homogeneous regression models with positive regression coefficients exhibited better prediction skill than BMA. In particular, the homogeneous regression model with positive regression coefficients exhibited the best prediction skill.  相似文献   
385.
Tomo-SAR technique has been used for hemi-boreal forest height and further forest biomass estimation through allometric equation. Backscattering coefficient especially in longer wavelength (L- or P-band) is thought as a useful parameter for hemi-boreal forest biomass retrieval. The aim of this paper is to assess the performance of vertical backscattering power and backscattering coefficient for hemi-boreal forest aboveground biomass (AGB) estimation with airborne P-band data. The test site locates in southern Sweden called Remningstorp test site, and the in-situ forest AGB ranges from 14 t/ha to 245 t/ha at stand level. Multi-baseline P-band Pol-InSAR data in repeat-path mode collected during March and May in 2007 at Remningstorp test site was used. We found that the correlation coefficient (R) between backscattering coefficient of P-band HH polarization and the in-situ forest biomass reached 0.87. The R for P-band VV backscattering power at 5 m is 0.71 and 10 m is 0.72. Backscattering coefficient in HH polarization and vertical backscattering power at 5 m and 10 m were applied to construct a model for hemi-boreal forest AGB estimation by backward step-wise regression and cross-validation approach. The results showed that the estimated forest AGB ranges from 19 to 240 t/ha, and the constructed model obtained a higher R and smaller RMSE, the value of R is 0.91, RMSE is 30.43 t/ha at Remningstorp test site.  相似文献   
386.
3D geographic information system software’s (GIS) are widely used in engineering geology applications. This study was performed in the Karsiyaka settlement area for the preparation of engineering geological maps and evaluation of geological structures. Firstly, topographic maps digitized with Arcview GIS 3.2. Engineering geological maps were prepared using site works and digitized with the Rockworks 2006 programme and later stored in GIS-based computer systems. 3D modelling analysis and assessment using a geotechnical database is important to assist decision-making for land use and metro subway line planning, construction site selection, selection of water sources, etc. In this respect, the sub-surface of the study area is fully 3D visualized and useful soil class zonation maps for different depths maps are performed to be used in further studies. At last, after research at this site, the construction applications of Karsiyaka have multiplied.  相似文献   
387.
Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1?×?1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area.  相似文献   
388.
Soil moisture is a geophysical key observable for predicting floods and droughts, modeling weather and climate and optimizing agricultural management. Currently available in situ observations are limited to small sampling volumes and restricted number of sites, whereas measurements from satellites lack spatial resolution. Global navigation satellite system (GNSS) receivers can be used to estimate soil moisture time series at an intermediate scale of about 1000 m2. In this study, GNSS signal-to-noise ratio (SNR) data at the station Sutherland, South Africa, are used to estimate soil moisture variations during 2008–2014. The results capture the wetting and drying cycles in response to rainfall. The GNSS Volumetric Water Content (VWC) is highly correlated (r 2 = 0.8) with in situ observations by time-domain reflectometry sensors and is accurate to 0.05 m3/m3. The soil moisture estimates derived from the SNR of the L1 and L2P signals compared to the L2C show small differences with a RMSE of 0.03 m3/m3. A reduction in the SNR sampling rate from 1 to 30 s has very little impact on the accuracy of the soil moisture estimates (RMSE of the VWC difference 1–30 s is 0.01 m3/m3). The results show that the existing data of the global tracking network with continuous observations of the L1 and L2P signals with a 30-s sampling rate over the last two decades can provide valuable complementary soil moisture observations worldwide.  相似文献   
389.
The global navigation satellite system (GNSS) can provide centimeter positioning accuracy at low costs. However, in order to obtain the desired high accuracy, it is necessary to use high-quality atmospheric models. We focus on the troposphere, which is an important topic of research in Brazil where the tropospheric characteristics are unique, both spatially and temporally. There are dry regions, which lie mainly in the central part of the country. However, the most interesting area for the investigation of tropospheric models is the wet region which is located in the Amazon forest. This region substantially affects the variability of humidity over other regions of Brazil. It provides a large quantity of water vapor through the humidity convergence zone, especially for the southeast region. The interconnection and large fluxes of water vapor can generate serious deficiencies in tropospheric modeling. The CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) has been providing since July 2012 a numerical weather prediction (NWP) model for South America, known as Eta. It has yield excellent results in weather prediction but has not been used in GNSS positioning. This NWP model was evaluated in precise point positioning (PPP) and network-based positioning. Concerning PPP, the best positioning results were obtained for the station SAGA, located in Amazon region. Using the NWP model, the 3D RMS are less than 10 cm for all 24 h of data, whereas the values reach approximately 60 cm for the Hopfield model. For network-based positioning, the best results were obtained mainly when the tropospheric characteristics are critical, in which case an improvement of up to 7.2 % was obtained in 3D RMS using NWP models.  相似文献   
390.
With the development of precise point positioning (PPP), the School of Geodesy and Geomatics (SGG) at Wuhan University is now routinely producing GPS satellite fractional cycle bias (FCB) products with open access for worldwide PPP users to conduct ambiguity-fixed PPP solution. We provide a brief theoretical background of PPP and present the strategies and models to compute the FCB products. The practical realization of the two-step (wide-lane and narrow-lane) FCB estimation scheme is described in detail. With GPS measurements taken in various situations, i.e., static, dynamic, and on low earth orbit (LEO) satellites, the quality of FCB estimation and the effectiveness of PPP ambiguity resolution (AR) are evaluated. The comparison with CNES FCBs indicated that our FCBs had a good consistency with the CNES ones. For wide-lane FCB, almost all the differences of the two products were within ±0.05 cycles. For narrow-lane FCB, 87.8 % of the differences were located between ±0.05 cycles, and 97.4 % of them were located between ±0.075 cycles. The experimental results showed that, compared with conventional ambiguity-float PPP, the averaged position RMS of static PPP can be improved from (3.6, 1.4, 3.6) to (2.0, 1.0, 2.7) centimeters for ambiguity-fixed PPP. The average accuracy improvement in the east, north, and up components reached 44.4, 28.6, and 25.0 %, respectively. A kinematic, ambiguity-fixed PPP test with observation of 80 min achieved a position accuracy of better than 5 cm at the one-sigma level in all three coordinate components. Compared with the results of ambiguity-float, kinematic PPP, the positioning biases of ambiguity-fixed PPP were improved by about 78.2, 20.8, and 65.1 % in east, north, and up. The RMS of LEO PPP test was improved by about 23.0, 37.0, and 43.0 % for GRACE-A and GRACE-B in radial, tangential, and normal directions when AR was applied to the same data set. These results demonstrated that the SGG FCB products can be produced with high quality for users anywhere around the world to carry out ambiguity-fixed PPP solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号