首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27086篇
  免费   293篇
  国内免费   934篇
测绘学   1505篇
大气科学   2292篇
地球物理   5078篇
地质学   12381篇
海洋学   1320篇
天文学   2141篇
综合类   2164篇
自然地理   1432篇
  2023年   9篇
  2022年   10篇
  2021年   34篇
  2020年   45篇
  2019年   50篇
  2018年   4810篇
  2017年   4075篇
  2016年   2684篇
  2015年   300篇
  2014年   169篇
  2013年   163篇
  2012年   1097篇
  2011年   2866篇
  2010年   2129篇
  2009年   2482篇
  2008年   2042篇
  2007年   2485篇
  2006年   183篇
  2005年   302篇
  2004年   518篇
  2003年   513篇
  2002年   346篇
  2001年   124篇
  2000年   135篇
  1999年   82篇
  1998年   106篇
  1997年   45篇
  1996年   45篇
  1995年   33篇
  1994年   23篇
  1993年   32篇
  1992年   22篇
  1991年   33篇
  1990年   13篇
  1989年   16篇
  1987年   14篇
  1986年   10篇
  1985年   19篇
  1984年   26篇
  1983年   19篇
  1982年   11篇
  1981年   27篇
  1980年   27篇
  1979年   8篇
  1978年   9篇
  1977年   10篇
  1976年   19篇
  1975年   13篇
  1973年   8篇
  1971年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
721.
Qatar economy has been growing rapidly during the last two decades during which waste generation and greenhouse gas emissions increased exponentially making them among the main environmental challenges facing the country. Production of biochar from municipal solid organic wastes (SOWs) for soil application may offer a sustainable waste management strategy while improving crop productivity and sequestering carbon. This study was conducted to (1) investigate the physicochemical parameters of biochars for SOW, (2) select the best-performing biochars for soil fertility, and (3) evaluate the potential benefits of these biochars in lowering greenhouse gases (GHGs) during soil incubation. Biochars were produced from SOW at pyrolysis temperatures of 300–750 °C and residence times of 2–6 h. Biochars were characterized before use in soil incubation to select the best-performing treatment and evaluation of potential GHG-lowering effect using CO2 emission as proxy. Here, soil–biochar mixtures (0–2%w/w) were incubated in greenhouse settings for 120 days at 10% soil moisture. Soil properties, such as pH, EC, TC, and WHC, were significantly improved after soil amendment with biochar. Two biochars produced from mixed materials at 300–500 °C for 2 h and used at 0.5–1% application rate performed the best in enhancing soil fertility parameters. A significant decrease in CO2 emission was observed in vials with soil–biochar mixtures, especially for biochars produced at 500 °C compared the corresponding raw materials which exhibited an exponential increase in the CO2 emission. Hence, application of biochar to agricultural soils could be beneficial for simultaneously improving soil fertility/crop productivity while sequestering carbon, thereby reducing anthropogenic emissions of GHGs.  相似文献   
722.
Waste engine oil causes a vital environmental pollution when it spill during change and transportation and products of waste engine oil causes lethal effects to the living systems. Thus, abiotic and biotic approaches are being extensively used for removal of waste engine oil pollution. Therefore in present study, waste engine oil degradation was accomplished by a new bacterial culture, isolated from the soil by an enrichment technique. Morphological, biochemical and gene sequence analysis revealed that isolate was Bacillus cereus. Subsequently, biodegradation potential of B. cereus for waste engine oil was studied. Experimental variables, such as pH, substrate concentration, inoculum size, temperature and time on the biodegradation, were checked in mineral salt medium. The biodegradation efficiency of B. cereus was determined by gravimetry, UV–visible spectrophotometry and gas chromatography. In addition, waste engine oil was also characterized by GC–MS and FTIR for its major constituents, which showed total 38 components in waste engine oil, including hopanes, benzopyrene, long-chain aliphatic hydrocarbons, dibenzothiophenes, biphenyl and their derivatives. Results of successive biodegradation indicated that B. cereus was capable to degrade 1% of waste engine oil with 98.6% degradation potential at pH 7 within 20 days. Hence, B. cereus presents an innovative tool for removing the engine oil from the contaminated area.  相似文献   
723.
The results of studying the features of the hydrogeological structure and chemical and isotope composition of thermal waters from the central part of Vietnam that are characterized by intense manifestations of intrusive magmatism are presented. It is established that low–and high–thermal waters with temperature varying within 30–85°C are developed in the area under study. The value of total mineralization of the hydrotherms ranges from 0.05 to 10.05 g/dm3. It is assumed that the circulation of thermal waters that are different in temperature and chemical composition occurs at two levels. The regular change of the hydrotherm composition in the direction from mineralized chloride sodium, including with increased Ca content, to fresh sodium bicarbonate is revealed. The ratio of δ18O–δ2H isotopes indicates that the water component is based on meteoric water. In the coastal areas, there is an isotope shift towards the ocean waters, which is also confirmed by the hydrogeochemical data. The key factors for forming the chemical composition of the thermal waters in South Trungbo are their genetic type, the interaction processes in the “water–rock–gas–organic substance” system, and their equilibrium–nonequilibrium state.  相似文献   
724.
This paper presents the creep behaviour of intact and remoulded specimens of fibrous peat obtained from a field site near Anzac, Alberta, Canada. The creep behaviour was investigated by means of long-term drained and undrained triaxial tests. The development of volumetric, axial, and undrained axial strain and strain rate during drained and undrained creep tests under variable stress conditions is presented. The stress strain strain rate (p′ε v\(\dot{\varepsilon }_{\text{v}}\)) relationship is found to be unique for different stress and loading durations. The p′ε v\(\dot{\varepsilon }_{\text{v}}\) relationship is analysed and represented by creep isotaches. The applicability of different creep models developed for normally consolidated clay is discussed and applied to define the development of creep strain in fibrous peat under varying isotropic and deviator stresses. The secondary consolidation coefficient for evaluating the volumetric strain rate of peat is found to be applicable with some limits. The drained creep behaviour of remoulded peat specimens differs from the behaviour shown by Shelby tube specimens, whereas the undrained creep behaviour in remoulded and Shelby tube specimens is similar.  相似文献   
725.
Foundation soils are often under non-proportional cyclic loadings. The deformation behaviour and the mechanism of non-coaxiality under continuous pure principal stress rotation for clays are not clearly investigated up to now. In order to study the effect of pure principal stress rotation, a series of cyclic undrained tests on Shanghai soft clay subjected to cyclic rotation of principal stress directions keeping the deviatoric stress constant under the pure rotation condition were conducted using hollow cylinder apparatus. Based on this, the evolutions of excess pore pressure and strains during cyclic loading were investigated, together with the effects of the intermediate principal stress parameter and the deviatoric stress level on stress–strain stiffness and non-coaxiality. The result can provide an experimental basis for constitutive modelling of clays describing the behaviour under non-proportional loadings.  相似文献   
726.
In this paper, numerical and analytical methods are used to evaluate the ultimate pullout capacity of a group of square anchor plates in row or square configurations, installed horizontally in dense sand. The elasto-plastic numerical study of square anchor plates is carried out using three-dimensional finite element analysis. The soil is modeled by an elasto-plastic model with a Mohr–Coulomb yield criterion. An analytical method based on a simplified three-dimensional failure mechanism is developed in this study. The interference effect is evaluated by group efficiency η, defined as the ratio of the ultimate pullout capacity of group of N anchor plates to that of a single isolated plate multiplied by number of plates. The variation of the group efficiency η was computed with respect to change in the spacing between plates. Results of the analyses show that the spacing between the plates, the internal friction angle of soil and the installation depth are the most important parameters influencing the group efficiency. New equations are developed in this study to evaluate the group efficiency of square anchor plates embedded horizontally in sand at shallow depth (H = 4B). The results obtained by numerical and analytical solutions are in excellent agreement.  相似文献   
727.
A novel study on using geoelectrical resistivity, soil property, and hydrogeochemical analysis methods for delineating and mapping of heavy metal in aquifer system is presented in this paper. A total of 47 surveys of geoelectrical resistivity with Wenner configuration were conducted to determine the subsurface and the groundwater characteristics. The groundwater sample from 53 existing wells and 2 new wells has been analyzed to derive their water chemical content. The chemical analysis was done on the soil sample obtained from new two wells and from selected locations. The water and soil chemical analysis results from the new two wells were used as calibration in resistivity interpretation. The occurrence of heavy metal in aquifer system was expected to detect using the geoelectrical resistivity survey for the whole study area. The result of groundwater analysis shows that the groundwater sample contains a relatively low concentration of Fe (<?0.3 mg/L) elongating from the south up to the middle region. While in the middle and the northwestern, Fe concentration is relatively high (around 12 mg/L). Chemical analysis of soil sample shows that in the lower resistivity zone (<?18 Ωm), Al and Fe concentrations are comparatively high with an average of 68,000 and 40,000 mg/kg, respectively. Starting from the middle to the northwestern zone, the resistivity value appears to be low. It is definitely caused by higher Al and Fe concentration within the soil, and it is supported also by lower total anion content in the groundwater. While the resistivity value of more than 40 Ωm in aquifers is obtained in the zone which Fe concentration is relatively lower in the soil but not present in the groundwater. Correlation Fe concentration in the soil and Fe concentration in the groundwater sample shows the trend of positively linear; however, the Al concentration in soil has no correlation with Al content in groundwater. Finally, the probability of high heavy metal zone in the aquifer system is easily delineated by the distribution of geoelectrical resistivity presented in depth slice shapes which extend from the Boundary Range Composite Batholith in the north to the northwest.  相似文献   
728.
The study of drying process in soils has received an increased attention in the last few years. This is very complex phenomenon that generally leads to the formation and propagation of desiccation cracks in the soil mass. In recent engineering applications, high aspect ratio elements have proved to be well suited to tackle this type of problem using finite elements. However, the modeling of interfaces between materials with orthotropic properties that generally exist in this type of problem using standard (isotropic) constitutive model is very complex and challenging in terms of the mesh generation, leading to very fine meshes that are intensive CPU demanding. A novel orthotropic interface mechanical model based on damage mechanics and capable of dealing with interfaces between materials in which the strength depends on the direction of analysis is proposed in this paper. The complete mathematical formulation is presented together with the algorithm suggested for its numerical implementation. Some simple yet challenging synthetic benchmarks are analyzed to explore the model capabilities. Laboratory tests using different textures at the contact surface between materials were conducted to evaluate the strengths of the interface in different directions. These experiments were then used to validate the proposed model. Finally, the approach is applied to simulate an actual desiccation test involving an orthotropic contact surface. In all the application cases the performance of the model was very satisfactory.  相似文献   
729.
Based on the analyses of mineralogical compositions by X-ray diffraction and microstructure by optical microscopy, the Young’ modulus and hardness of a claystone were characterized by the nano-indentation technique and homogenization method. Three distinct microstructural zones are identified in the claystone: clay matrix, a composite matrix of clay and small mineral grains and imbedded quartz grains. The elastic modulus and hardness of different zones were determined by nano-indentation testing. Based on the statistical analysis of nano-indentation results, the spatial mappings and frequency distributions of elastic modulus and hardness of the different zones were obtained. The elastic moduli of main constituent phases of the claystone are then estimated from the nano-indentation tests. These values were further used for the determination of the macroscopic elastic modulus of the claystone using two different homogenization schemes: the dilute scheme and Mori–Tanaka scheme. The predicted values by the homogenization schemes are compared with experimental data obtained from conventional uniaxial compression tests.  相似文献   
730.
Internal erosion is the most common reason which induces failure of embankment dams besides overtopping. Relatively large leakage is frequently concentrated at defects of impervious element, and this will lead to eventual failure. The amount of leakage depends not only on integrity of impervious element, but also on dam height, shape of valley, shape of impervious element and water level in reservoir. The integrity of impervious element, which represents the relative level of seepage safety, is not easy to be determined quantitatively. A simple method for generalization of steady seepage state of embankment dams with thin impervious element is proposed in this paper. The apparent overall value of permeability coefficient for impervious element can be obtained by this method with reasonable accuracy and efficiency. A defect parameter of impervious element is defined as an index to characterize seepage safety of embankment dams. It equals the ratio of the apparent overall value of permeability coefficient to the measured value in laboratory for intact materials. Subsequently, seepage safety of three dams is evaluated and the evolution of defect level of impervious element of dams is investigated. It is proved that the newly proposed method in this paper is feasible in the evaluation of relative seepage safety level of embankment dams with thin impervious element.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号