首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   22篇
  国内免费   9篇
测绘学   38篇
大气科学   109篇
地球物理   236篇
地质学   473篇
海洋学   76篇
天文学   169篇
自然地理   54篇
  2021年   9篇
  2020年   13篇
  2019年   8篇
  2018年   24篇
  2017年   20篇
  2016年   33篇
  2015年   28篇
  2014年   30篇
  2013年   41篇
  2012年   31篇
  2011年   47篇
  2010年   47篇
  2009年   56篇
  2008年   46篇
  2007年   50篇
  2006年   39篇
  2005年   46篇
  2004年   29篇
  2003年   27篇
  2002年   36篇
  2001年   25篇
  2000年   20篇
  1999年   26篇
  1998年   15篇
  1997年   12篇
  1996年   10篇
  1995年   20篇
  1994年   15篇
  1993年   15篇
  1991年   21篇
  1990年   12篇
  1989年   14篇
  1987年   14篇
  1986年   8篇
  1985年   10篇
  1984年   10篇
  1983年   9篇
  1981年   11篇
  1980年   10篇
  1979年   11篇
  1977年   10篇
  1976年   10篇
  1972年   7篇
  1971年   7篇
  1969年   7篇
  1966年   7篇
  1964年   7篇
  1960年   7篇
  1955年   6篇
  1948年   6篇
排序方式: 共有1155条查询结果,搜索用时 109 毫秒
991.
Greenland ice-core data containing the 8.2 ka event are utilized by a model-data intercomparison within the Earth system model of intermediate complexity, CLIMBER-2.3 to investigate their potential for constraining the range of uncertain ocean diffusivity properties. Within a stochastic version of the model (Bauer et al. in Paleoceanography 19:PA3014, 2004) it has been possible to mimic the pronounced cooling of the 8.2 ka event with relatively good accuracy considering the timing of the event in comparison to other modelling exercises. When statistically inferring from the 8.2 ka event on diffusivity the technical difficulty arises to establish the related likelihood numerically per realisation of the uncertain model parameters: while mainstream uncertainty analyses can assume a quasi-Gaussian shape of likelihood, with weather fluctuating around a long term mean, the 8.2 ka event as a highly nonlinear effect precludes such an a priori assumption. As a result of this study the Bayesian Analysis leads to a sharp single-mode likelihood for ocean diffusivity parameters within CLIMBER-2.3. Depending on the prior distribution this likelihood leads to a reduction of uncertainty in ocean diffusivity parameters (e.g. for flat prior uncertainty in the vertical ocean diffusivity parameter is reduced by factor 2). These results highlight the potential of paleo data to constrain uncertain system properties and strongly suggest to make further steps with more complex models and richer data sets to harvest this potential.  相似文献   
992.
European storminess: late nineteenth century to present   总被引:1,自引:0,他引:1  
Annual and seasonal statistics of local air pressure characteristics have already been used as proxies for storminess across Northern Europe. We present an update of such proxies for Northern Europe and an unprecedented analysis for Central Europe which together considerably extends the current knowledge of European storminess. Calculations are completed for three sets of stations, located in North-Western, Northern and Central Europe. Results derived from spatial differences (geostrophic winds) and single station pressure changes per 24 h support each other. Geostrophic winds’ high percentiles (95th, 99th) were relatively high during the late nineteenth and the early twentieth century; after that they leveled off somewhat, to get larger again in the late twentieth century. The decrease happens suddenly in Central Europe and over several decades in Northern Europe. The subsequent rise is most pronounced in North-Western Europe, while slow and steady in Central Europe. Europe’s storm climate has undergone significant changes throughout the past 130 years and comprises significant variations on a quasi-decadal timescale. Most recent years feature average or calm conditions, supporting claims raised in earlier studies with new evidence. Aside from some dissimilarity, a general agreement between the investigated regions appears to be the most prominent feature. The capability of the NAO index to explain storminess across Europe varies in space and with the considered period.  相似文献   
993.
We determined experimentally the Nernst distribution coefficient between orthopyroxene and anhydrous silicate melt for trace elements i in the system Na2O–CaO–MgO–Al2O3–SiO2 (NCMAS) along the dry model lherzolite solidus from 1.1 GPa/1,230°C up to 3.2 GPa/1,535°C in a piston cylinder apparatus. Major and trace element composition of melt and orthopyroxene were determined with a combination of electron microprobe and ion probe analyses. We provide partitioning data for trace elements Li, Be, B, K, Sc, Ti, V, Cr, Co, Ni, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Sm, Nd, Yb, Lu, Hf, Ta, Pb, U, and Th. The melts were chosen to be boninitic at 1.1 and 2.0 GPa, picritic at 2.3 GPa and komatiitic at 2.7 and 3.2 GPa. Orthopyroxene is Tschermakitic with 8 mol% Mg-Tschermaks MgAl[AlSiO6] at 1.1 GPa while at higher pressure it has 18–20 mol%. The rare earth elements show a continuous, significant increase in compatibility with decreasing ionic radius from D Laopx−melt ∼ 0.0008 to D Luopx−melt ∼ 0.15. For the high-field-strength elements compatibility increases from D Thopx−melt ∼ 0.001 through D Nbopx−melt ∼ 0.0015, D Uopx−melt ∼ 0.002, D Taopx−melt ∼ 0.005, D Zropx−melt ∼ 0.02 and D Hfopx−melt ∼ 0.04 to D Tiopx−melt ∼ 0.14. From mathematical and graphical fits we determined best-fit values for D 0M1, D 0M2, r 0M1, r 0M2, E 0M1, and E 0M2 for the two different M sites in orthopyroxene according to the lattice strain model and calculated the intracrystalline distribution between M1 and M2. Our data indicate extreme intracrystalline fractionation for most elements in orthopyroxene; for the divalent cations D i M2−M1 varies by three orders of magnitude between D CoM2−M1 = 0.00098–0.00919 and D BaM2−M1 = 2.3–28. Trivalent cations Al and Cr almost exclusively substitute on M1 while the other trivalent cations substitute on M2; D LaM2−M1 reaches extreme values between 6.5 × 107 and 1.4 × 1016. Tetravalent cations Ti, Hf, and Zr almost exclusively substitute on M1 while U and Th exclusively substitute on M2. Our new comprehensive data set can be used for polybaric-polythermal melting models along the Earth’s mantle solidus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
994.
We have detected micrometre-scale differences in Fe and Si stable isotope ratios between coexisting minerals and between layers of banded iron formation (BIF) using an UV femtosecond laser ablation system connected to a MC-ICP-MS. In the magnetite–carbonate–chert BIF from the Archean Old Wanderer Formation in the Shurugwi Greenstone Belt (Zimbabwe), magnetite shows neither intra- nor inter-layer trends giving overall uniform δ56Fe values of 0.9‰, but exhibits intra-crystal zonation. Bulk iron carbonates are also relatively uniform at near-zero values, however, their individual δ56Fe value is highly composition-dependent: both siderite and ankerite and mixtures between both are present, and δ56Fe end member values are 0.4‰ for siderite and −0.7‰ for ankerite. The data suggest either an early diagenetic origin of magnetite and iron carbonates by the reaction of organic matter with ferric oxyhydroxides catalysed by Fe(III)-reducing bacteria; or more likely an abiotic reaction of organic carbon and Fe(III) during low-grade metamorphism. Si isotope composition of the Old Wanderer BIF also shows significant variations with δ30Si values that range between −1.0‰ and −2.6‰ for bulk layers. These isotope compositions suggest rapid precipitation of the silicate phases from hydrothermal-rich waters. Interestingly, Fe and Si isotope compositions of bulk layers are covariant and are interpreted as largely primary signatures. Moreover, the changes of Fe and Si isotope signatures between bulk layers directly reflect the upwelling dynamics of hydrothermal-rich water which govern the rates of Fe and Si precipitation and therefore also the development of layering. During periods of low hydrothermal activity, precipitation of only small amounts of ferric oxyhydroxide was followed by complete reduction with organic carbon during diagenesis resulting in carbonate–chert layers. During periods of intensive hydrothermal activity, precipitation rates of ferric oxyhydroxide were high, and subsequent diagenesis triggered only partial reduction, forming magnetite–carbonate–chert layers. We are confident that our micro-analytical technique is able to detect both the solute flux history into the sedimentary BIF precursor, and the BIF’s diagenetic history from the comparison between coexisting minerals and their predicted fractionation factors.  相似文献   
995.
The gamma-ray imager (GRI) is a novel mission concept that will provide an unprecedented sensitivity leap in the soft gamma-ray domain by using for the first time a focusing lens built of Laue diffracting crystals. The lens will cover an energy band from 200–1,300 keV with an effective area reaching 600 cm2. It will be complemented by a single reflection multilayer coated mirror, extending the GRI energy band into the hard X-ray regime, down to ∼10 keV. The concentrated photons will be collected by a position sensitive pixelised CZT stack detector. We estimate continuum sensitivities of better than 10 − 7 ph cm − 2s − 1keV − 1 for a 100 ks exposure; the narrow line sensitivity will be better than 3 × 10 − 6 ph cm − 2s − 1 for the same integration time. As focusing instrument, GRI will have an angular resolution of better than 30 arcsec within a field of view of roughly 5 arcmin—an unprecedented achievement in the gamma-ray domain. Owing to the large focal length of 100 m of the lens and the mirror, the optics and detector will be placed on two separate spacecrafts flying in formation in a high elliptical orbit. R&D work to enable the lens focusing technology and to develop the required focal plane detector is currently underway, financed by ASI, CNES, ESA, and the Spanish Ministery of Education and Science. The GRI mission has been proposed as class M mission for ESAs Cosmic Vision 2015–2025 program. GRI will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the universe. All authors are on behalf of a large international collaboration The GRI mission has been proposed as an international collaboration between (in alphabetical order) Belgium (CSR), China (IHEP, Tsinghua Univ.), Denmark (DNSC, Southern Univ.), France (CESR, APC, ILL, CSNSM, IAP, LAM), Germany (MPE), Ireland (UCD School of Physics), Italy (INAF/IASF Rome, Bologna, Milano, Palermo; INAF/OA Brera, Roma; UNIFE, CNR/IMEM), Poland (NCAC), Portugal (Combra Univ., Evora Univ.), Russia (SINP, MSU, Ioffe Inst.), Spain (IEEC-CSIC-IFAE, CNM-IMB), the Netherlands (SRON, Utrecht Univ.), Turkey (Sabanci Univ.), United Kingdom (Univ. of Southampton, MSSL, RAL, Edinburgh Univ.), and the United States of America (SSL UC Berkeley, Argonne National Lab., MSFC, GSFC, US NRL).  相似文献   
996.
One of the scientific objectives of NASA’s Fermi Gamma-ray Space Telescope is the study of Gamma-Ray Bursts (GRBs). The Fermi Gamma-Ray Burst Monitor (GBM) was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of Fermi’s main instrument, the Large Area Telescope, into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. We present the principal instrument properties, which have been determined as a function of energy and angle, including the channel-energy relation, the energy resolution, the effective area and the spatial homogeneity.  相似文献   
997.
998.
The angular distribution of solar flare associated hard X-rays ( 10 keV) is calculated on the assumption that they originate as bremsstrahlung emission of energetic electrons with a power law spectrum. For the cross section the relativistic Sauter formula was used. Supposing the electrons to move in a fixed direction, the X-radiation is considerably anisotropic, especially at high photon energies. Taking into account a magnetic field, the anisotropy decreases with increasing pitch angles of the electrons. The anisotropic angular distribution of solar X-radiation seems to be connected with the centre-to-limb variation of hard X-ray bursts and with the correlation of shortwave fadeouts and geomagnetic crochets to H flares.  相似文献   
999.
A total of 11,500 line km of aerogravity data have been used to construct an free-air gravity anomaly map for the Antarctic region that may contain the microplate boundary between the Haag Nunataks block and southern Antarctic Peninsula. Along-line free-air gravity anomaly data resolved wavelengths of 9 km or greater with better than 5 mGal accuracy. Coincident radio echo soundings provided data to construct a digital terrain model. The gravity effect of the terrain was calculated by Gauss–Legendre quadrature (GLQ) and spectrally correlated with the free-air gravity data. Terrain-correlated free-air anomalies related to possible isostatic imbalances of the crust were separated from terrain-decorrelated anomalies that may reflect intra-crustal density contrasts. Subtracting terrain-correlated free-air anomalies from the gravity effects of the terrain yielded compensated terrain gravity effects (CTGE) that were used to model the Moho by inversion. The results indicate moderate but significant crustal thinning below the Evans Ice Stream that is consistent with an extensional origin for the deep, wide, steep-sided trough that contains the ice stream as well as the continued elevation of the footwall flank of the basin. Changes along the axis of the rift, both in the gravity anomaly field and the distribution of Moho topography, can be explained by processes associated with continental lithospheric extension. Subsequently, many of the features produced by extension have been modified by glacial erosion and the sub-ice topography and gravity data reflect this.  相似文献   
1000.
The aim of the atmospheric nitrogen inputs into the coastal ecosystem (ANICE) project is to improve transport–chemistry models that estimate nitrogen deposition to the sea. To achieve this, experimental and modelling work is being conducted which aims to improve understanding of the processes involved in the chemical transformation, transport and deposition of atmospheric nitrogen compounds. Of particular emphasis within ANICE is the influence of coastal zone processes. Both short episodes with high deposition and chronic nitrogen inputs are considered in the project. The improved transport–chemistry models will be used to assess the atmospheric inputs of nitrogen compounds into the European regional seas (the North Sea is studied as a prototype) and evaluate the impact of various emission reduction strategies on the atmospheric nitrogen loads. Assessment of the impact of atmospheric nitrogen on coastal ecosystems will be based on comparisons of phytoplankton nitrogen requirements, other external nitrogen inputs to the ANICE area of interest and the direct nitrogen fluxes provided by ANICE. Selected results from both the experimental and modelling components are presented here. The experimental results show the large spatial and temporal variability in the concentrations of gaseous nitrogen compounds, and their influences on fluxes. Model calculations show the strong variation of both concentrations and gradients of nitric acid at fetches of up to 25 km. Aerosol concentrations also show high temporal variability and experimental evidence for the reaction between nitric acid and sea salt aerosol is provided by size-segregated aerosol composition measured at both sides of the North Sea. In several occasions throughout the experimental period, air mass back trajectory analysis showed connected flow between the two sampling sites (the Weybourne Atmospheric Observatory on the North Norfolk coast of the UK and Meetpost Noordwijk, a research tower at 9 km off the Dutch coast). Results from the METRAS/SEMA mesoscale chemistry transport model system for one of these cases are presented. Measurements of aerosol and rain chemical composition, using equipment mounted on a commercial ferry, show variations in composition across the North Sea. These measurements have been compared to results obtained with the transport–chemistry model ACDEP which calculates the atmospheric inputs into the whole North Sea area. Finally, the results will be made available for the assessment of the impact of atmospheric nitrogen on coastal ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号