首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   12篇
  国内免费   4篇
测绘学   29篇
大气科学   46篇
地球物理   140篇
地质学   240篇
海洋学   50篇
天文学   81篇
自然地理   24篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   17篇
  2015年   13篇
  2014年   14篇
  2013年   23篇
  2012年   7篇
  2011年   26篇
  2010年   30篇
  2009年   23篇
  2008年   17篇
  2007年   27篇
  2006年   21篇
  2005年   23篇
  2004年   18篇
  2003年   14篇
  2002年   24篇
  2001年   15篇
  2000年   7篇
  1999年   15篇
  1998年   5篇
  1997年   6篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1991年   17篇
  1990年   8篇
  1989年   9篇
  1987年   7篇
  1986年   5篇
  1985年   8篇
  1983年   7篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
  1972年   4篇
  1971年   5篇
  1966年   6篇
  1964年   6篇
  1962年   4篇
  1960年   6篇
  1956年   4篇
  1952年   5篇
  1949年   4篇
  1948年   5篇
排序方式: 共有610条查询结果,搜索用时 15 毫秒
111.
Several types of growth morphologies and alteration mechanisms of zircon crystals in the high-grade metamorphic Ivrea Zone (IZ) are distinguished and attributed to magmatic, metamorphic and fluid-related events. Anatexis of pelitic metasediments in the IZ produced prograde zircon overgrowths on detrital cores in the restites and new crystallization of magmatic zircons in the associated leucosomes. The primary morphology and Th-U chemistry of the zircon overgrowth in the restites show a systematic variation apparently corresponding to the metamorphic grade: prismatic (prism-blocked) low-Th/U types in the upper amphibolite facies, stubby (fir-tree zoned) medium-Th/U types in the transitional facies and isometric (roundly zoned) high-Th/U types in the granulite facies. The primary crystallization ages of prograde zircons in the restites and magmatic zircons in the leucosomes cannot be resolved from each other, indicating that anatexis in large parts of the IZ was a single and short lived event at 299 ± 5 Ma (95% c. l.). Identical U/Pb ages of magmatic zircons from a metagabbro (293 ± 6 Ma) and a metaperidotite (300 ± 6 Ma) from the Mafic Formation confirm the genetic context of magmatic underplating and granulite facies anatexis in the IZ. The U-Pb age of 299 ± 5 Ma from prograde zircon overgrowths in the metasediments also shows that high-grade metamorphic (anatectic) conditions in the IZ did not start earlier than 20 Ma after the Variscan amphibolite facies metamorphism in the adjacent Strona–Ceneri Zone (SCZ). This makes it clear that the SCZ cannot represent the middle to upper crustal continuation of the IZ. Most parts of zircon crystals that have grown during the granulite facies metamorphism became affected by alteration and Pb-loss. Two types of alteration and Pb-loss mechanisms can be distinguished by cathodoluminescence imaging: zoning-controlled alteration (ZCA) and surface-controlled alteration (SCA). The ZCA is attributed to thermal and/or decompression pulses during extensional unroofing in the Permian, at or earlier than 249 ± 7 Ma. The SCA is attributed to the ingression of fluids at 210 ± 12 Ma, related to hydrothermal activity during the breakup of the Pangaea supercontinent in the Upper Triassic/Lower Jurassic. Received: 7 July 1998 / Accepted: 4 November 1998  相似文献   
112.
Acta Geotechnica - The elastic stiffness of a fine sand at small to moderate strains ( $$\varepsilon \le 2 \times 10^{-4}$$ ) has been studied based on cyclic triaxial tests on cube-shaped samples...  相似文献   
113.
A hydrogeological study was completed within a sub-catchment of the Zerka River drainage basin, in western Jordan. The system is characterized by anticlinal bending with an axis trending SSW–NNE and plunging a few degrees in the SSW direction. The anticlinal structure diverts groundwater flow towards the SSW while the strike-slipe faults cause the groundwater to diverge where the fault is perpendicular to the groundwater flow lines, and to converge where the fault is parallel to the groundwater flow lines. A direct relationship was found between the location of springs and the type of groundwater flow with regard to the amount of discharge wherein large spring discharges are located in zones of converging groundwater flow lines. In areas where faults are not abundant, the groundwater retention time in the aquifers is long and a zonation of the electrical conductivity was detected due to mineral dissolution. By controlling groundwater flow, the anticlinal setting produces three genetic groups of groundwater flow systems: (1) alkaline–earth alkaline water which is predominately a bicarbonate-type composition, (2) alkaline–earth alkaline water which is predominately bicarbonate–sulfate, and (3) alkaline–earth alkaline water with a high alkaline component.  相似文献   
114.
Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/m2 and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edge or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg s?1 for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which are large enough not to be susceptible to particle loss by light induced ejection. Due to the ejections, planetesimals and smaller bodies will be accelerated or decelerated and drift outward or inward, respectively. The effect might also explain the entrainment of dust in dust devils on Mars, especially at high altitudes where gas drag alone might not be sufficient.  相似文献   
115.
Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.  相似文献   
116.
The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies.  相似文献   
117.
Vitreous materials are quite routinely found in natural settings. Most of them are aluminosilicates, which often occur in large deposits. Considering the geological formations in which naturally occurring vitreous aluminosilicates are found, they have generally remained stable for more than 1 Ma on the earth's surface, even in different geological and climatic environments. These non-crystalline solids played a very important role in the development of ancient human civilizations, long before the introduction of metallic tools. Today, however, the properties of natural glasses are of interest to mankind for completely different reasons. For example, industrial glasses are used today for encapsulating toxic wastes, especially radioactive waste, which remains active for centuries or more, in order to prevent the unwanted transfer of harmful materials to the environment. The chemical compositions of industrially produced glasses are in large part different from the compositions of natural glasses. Little is quantitatively known about the stability of industrial glasses over very long periods of time (>10,000 years). However, the physical and chemical stability of natural aluminosilicate glasses is known to extend over very long periods of time.The advancement of technological design to prevent or at least minimize the melt down of toxic waste during the encapsulation process is currently a major challenge, using glasses of natural chemical composition. Brecciated glass, which is found frequently in natural settings, provides a special clue to the possibility of producing vitreous solids by sintering glass fragments without melting the cullets. It is essential to prevent melting of the cullets because the melt has the potential of chemically reacting with the toxic waste.This paper summarizes the geological, chemical, and physical facts concerning naturally produced glasses, and seeks to establish a recognized database for further research in the domain of understanding the glass-forming processes that occur in nature. Furthermore, the authors hope to stimulate research into the utilization of natural resources that to solve the problem of storing of toxic waste safely.Major and trace element data have been collected over the past 100 years. These data constitute a sufficient basis for the chemical characterization of natural glasses. More information about the major elements is not required, in order to understand the chemical properties of these materials. On the other hand, large gaps in compositional data exist where other related components are concerned: e.g., in the case of “water-species”, with its different forms of bonding in silicates or oxygen (oxygen fugacity), CO2-, sulphur - or hydrocarbons (methane)-, hydrogen-, chlorine-and fluorine-species. All these components have a significant impact on the properties of glasses, even when present only in minor quantities. Glass textures and crystal morphologies reflect the processes of nucleation and crystal growth in a glass-forming matrix during the cooling and reheating cycles which are currently not thoroughly understood. In nature, the processes that led to the formation of vitreous materials are very different from those used in the production of industrial glasses. The different genetic conditions under which glass formation occurs permit differentiation between magmatic and metamorphic vitreous solids. Sedimentary and biogenetic processes also contribute to the formation of non-crystalline solids.  相似文献   
118.
Urban areas are the focus of major ecological, social and economical activity. They are thus also prime locations of increasing conflict with regard to water use and water protection. As a direct and/or indirect consequence of urban land use and human activity, urban water systems are frequently polluted with organic contaminants including waste water-born xenobiotics such as pharmaceuticals, personal care products (collectively known as PPCPs) and endocrine-active substances. This study reviews new integrated methodologies including flux calculations as well as chemical investigations for determining the impact of human activities on urban water systems and on processes within the urban watershed. The use of indicator substances, representing different contaminant sources and pathways, integral pumping tests and mass balance approaches are suitable alternatives within these environments. The issues are explored using contaminant mass balance examples from Halle/Saale and Leipzig, Germany.  相似文献   
119.
Multiple intertidal bars are common features of wave‐dominated sandy beaches, yet their short‐term (<1 month) and small‐scale (<1 km) morphology and dynamics remain poorly understood. This study describes the morphodynamics of multiple intertidal bars in North Lincolnshire, England, during single and lunar tidal cycles under two contrasting conditions – first when significant wave height was <0·5 m and second when significant wave height frequently exceeded 1 m. The relative importance of swash, surf and shoaling processes in determining morphological change was examined using detailed field observations and a numerical model. The beach featured four intertidal bars and both cross‐shore and longshore bar morphology evolved during the field investigation, particularly under medium to high wave‐energy conditions. Numerical modelling suggests shoaling processes are most common on the seaward two bars under calm wave conditions (Hs < 0·5 m) and that surf zone processes become more common during neap tides and under more energetic (Hs < 0·5 m) conditions. Surf processes dominate the inner two bars, though swash influence increases in a landward direction. The numerical modelling results combined with low tide survey data and high‐resolution morphological measurements strongly suggest changes in the intertidal bar morphology are accomplished by surf zone processes rather than by shoaling wave or swash processes. This is because shoaling waves do not induce significant sediment transport to have any morphological effect, whereas swash action generally does not have enough scope to act as the swash zone is much narrower than the surf zone. It was found, however, that the absolute rate of morphological change under swash action and surfzone processes are of similar magnitudes and that swash action may induce a significant amount of local morphological change when the high tide mark is located on the upper bar, making this process important for bar morphodynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
120.
A precise knowledge of methane exchange processes is required to fully understand the recent rise of atmospheric methane concentration. Three of these processes take place at the lithosphere/atmosphere boundary: bacterial consumption of methane and emission of bacterial or thermogenic methane. This study was initiated to quantify these processes on a regional scale in the Ruhr Basin and the Lower Rhine Embayment. Since these areas are subject to bituminous coal and lignite mining, natural and anthropogenically-induced methane exchange processes could be studied. The methane emission and consumption rates and their carbon isotope signal were measured at the lithosphere/atmosphere boundary using flux chambers. On most of the soils studied, methane consumption by bacteria was identified. Thermogenic methane was released only at some of the natural faults examined. In active and abandoned bituminous coal mining areas methane emissions were restricted to small areas, where high emission rates were measured. The carbon isotope composition of methane at natural faults and in mining subsidence troughs was typical of thermogenic methane (−45 to −32 ‰ δ13C). Methane exchange balancing revealed that natural methane emissions from these two basins represent no source of atmospheric importance. However, methane release by upcast mining shafts dominates the methane exchange processes and is by about two orders of magnitude greater than methane consumption by bacterial oxidation in the soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号