首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24540篇
  免费   175篇
  国内免费   916篇
测绘学   1414篇
大气科学   1992篇
地球物理   4544篇
地质学   11639篇
海洋学   1017篇
天文学   1640篇
综合类   2161篇
自然地理   1224篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   4761篇
  2017年   4039篇
  2016年   2582篇
  2015年   235篇
  2014年   84篇
  2013年   29篇
  2012年   990篇
  2011年   2734篇
  2010年   2016篇
  2009年   2319篇
  2008年   1894篇
  2007年   2363篇
  2006年   57篇
  2005年   201篇
  2004年   408篇
  2003年   413篇
  2002年   253篇
  2001年   52篇
  2000年   53篇
  1999年   16篇
  1998年   23篇
  1997年   1篇
  1996年   4篇
  1994年   4篇
  1993年   3篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   24篇
  1980年   21篇
  1979年   1篇
  1978年   3篇
  1976年   7篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Prokopenko and Kendall (J Paleolimnol doi:, 2008) criticise the work presented in Fedotov et al. (J Paleolimnol 39:335–348, 2008), and instead propose an alternative interpretation for the grain-size evolution recorded in the KDP-01 core, retrieved from the central part of Lake Khubsugul. Their interpretation is based (i) on a seismic-stratigraphic re-interpretation of sparker seismic profile khub012 (which they copied from Fedotov et al. (EOS Trans 87:246–250, 2006)), (ii) on the presupposition that changes in lake level are the dominant control on facies distribution in Lake Khubsugul, and (iii) on the invalidation of our age-depth model. In this reply to their comment, we demonstrate that they interpreted seismic artefacts and geometries caused by changes in profile orientation as true stratigraphic features and that the lake-level reconstruction they derive from this interpretation is therefore incorrect. We also demonstrate that their grain-size predictions, which they consider to be predominantly driven by changes in lake level, are inconsistent with the measured sulphate concentration, which is a demonstrated proxy of lake level in Lake Khubsugul, and with the measured grain-size record. Finally, we point out that even if there would be a problem with the age-depth model, this problem would not affect the part of the sedimentary sequence discussed in Fedotov et al. (J Paleolimnol 39:335–348, 2008).  相似文献   
12.
Flora and fauna have both evolved under a natural cycle of light and dark. But especially in urban areas, the night is now increasingly disturbed by artificial light. Many traits and behaviours in fish are triggered by a circadian clock, for example hatching and swim bladder inflation, which predominantly take place at dusk or night. As lighting becomes brighter and extends farther into rural areas, the distinction between day and night becomes increasingly blurred. Therefore, the loss of diurnal trigger by artificial light at night was hypothesized having deleterious effects on these traits and impact fish reproduction. To assess these effects, eggs of four native freshwater fishes, Eurasian perch Perca fluviatilis, roach Rutilus rutilus, bleak Alburnus alburnus and chub Leuciscus cephalus, were incubated under two different light conditions: a photoperiod of 14 h light:10 h darkness (LD) and continuous illumination (LL). The time to hatch and swim bladder inflation was recorded. The species showed inconsistent reactions to the light treatments. In roach and bleak, the time to 50% hatch was longer in LL, whereas continuous lighting had an accelerating effect in chub. Incubation in LL elongated the hatching period in perch and roach and, in perch, the onset of darkness seemed to trigger hatching. The swim bladder inflation was significantly promoted by continuous light in chub and bleak but was not affected in roach. In conclusion, nocturnal artificial illumination could have an effect on hatching and initial swim bladder filling by masking the day–night-change and thereby diminish the trigger effect. However, the reactions were species specific and the increase in variation indicated a lack of diurnal triggering, whilst a general deleterious effect of artificial light at night has not been identified on early life stages.  相似文献   
13.
The Upper Middle Rhine Valley, granted the status of a World Heritage site, is well known for its unique inner narrow valley of Quaternary age with its historical legacy of numerous medieval castles and old towns. Less known is that this has always been a risk area of floods and gravitative mass movements. Up to the recent past, mainly ice floods caused enormous damage. The inhabitants of the valley were well aware that they lived in a risk area, but they had learned to handle the flood hazard. With the demise of ice floods over the last 40 years, due to climate change and because of the additional heating of the river water by power plants, the awareness of flood hazards has been much diminished, in contrast to that of potential damage by rockfalls and landslides which were also much feared in the past, though at the local level only. Still in the people’s memory is the Kaub catastrophe of March 10, 1876, when 28 persons were killed by a landslide. Nowadays, even minor rockfalls are a major threat, as they will affect the much-used traffic lines on both banks of the river, in particular the railroads. Therefore, since 2002, on behalf of German Rail (Deutsche Bahn, DB), all problematic slopes have been protected by costly steel-ring nets, although they are an aesthetic problem by UNESCO standards. The feeling of absolute safety created among the public is only subjective, though, as planners are well aware of. Moreover, the impact of modern climate change on slope stability is nearly unknown. Therefore, it is still necessary to develop a risk map for the narrow valley, with emphasis on gravitational hazards.  相似文献   
14.
Power spectra of segmentation-cell length (a dominant length scale of EUV emission in the transition region) from full-disk He?ii extreme ultraviolet (EUV) images observed by the Extreme ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) during periods of quiet-Sun conditions for a time interval from 1996 to 2015 were analyzed. The spatial power as a function of the spatial frequency from about 0.04 to 0.27 (EIT) or up to 0.48 (AIA) Mm?1 depends on the distribution of the observed segmentation-cell dimensions – a structure of the solar EUV network. The temporal variations of the spatial power reported by Didkovsky and Gurman (Solar Phys. 289, 153, 2014) were suggested as decreases at the mid-spatial frequencies for the compared spectra when the power curves at the highest spatial frequencies of 0.5 pix?1 were adjusted to match each other. This approach has been extended in this work to compare spectral ratios at high spatial frequencies expressed in the solar spatial frequency units of Mm?1. A model of EIT and AIA spatial responses allowed us to directly compare spatial spectral ratios at high spatial frequencies for five years of joint operation of EIT and AIA, from 2010 to 2015. Based on this approach, we represent these ratio changes as a long-term network transformation that may be interpreted as a continuous dissipation of mid-size network structures to the smaller-size structures in the transition region. In contrast to expected cycling of the segmentation-cell dimension structures and associated spatial power in the spectra with the solar cycle, the spectra demonstrate a significant and steady change of the EUV network. The temporal trend across these structural spectra is not critically sensitive to any long-term instrumental changes, e.g. degradation of sensitivity, but to the change of the segmentation-cell dimensions of the EUV network structure.  相似文献   
15.
Ecosystem multifunctionality(EMF), the simultaneous provision of multiple ecosystem functions, is often affected by biodiversity and environmental factors. We know little about how the interactions between biodiversity and environmental factors affect EMF. In this case study, a structural equation model was used to clarify climatic and geographic pathways that affect EMF by varying biodiversity in the Tibetan alpine grasslands. In addition to services related to carbon, nitrogen, and water cycling, forage supply, which is related to plantproductivity and palatability, was included in the EMF index. The results showed that 72% of the variation in EMF could be explained by biodiversity and other environmental factors. The ratio of palatable richness to all species richness explained 8.3% of the EMF variation. We found that air temperature, elevation, and latitude all affected EMF, but in different ways. Air temperature and elevation impacted the aboveground parts of the ecosystem, which included plant height, aboveground biomass, richness of palatable species, and ratio of palatable richness to all species richness. Latitude affected EMF by varying both aboveground and belowground parts of the ecosystem, which included palatable speciesrichness and belowground biomass. Our results indicated that there are still uncertainties in the biodiversity–EMF relationships related to the variable components of EMF, and climatic and geographic factors. Clarification of pathways that affect EMF using structural equation modeling techniques could elucidate the mechanisms by which environmental changes affect EMF.  相似文献   
16.
Increase in waste generation calls for an effective waste management as this has become a necessity for environmental sustainability. Several methods are adopted in managing waste, which include waste reduction, reuse, thermal treatment, recycling and landfilling. The landfill method is recognised as the most used of all the waste management methods in developing countries such as Ghana. However, the selection of a suitable landfill site is very difficult and tedious. This is because it involves a consideration of many factors such as environmental, topographic, economic, socio-cultural and civil engineering. This research sought to identify a suitable landfill site by applying GIS multicriteria and weighted overlay approach in the Bongo District of Northern Ghana. The analysis relied on criteria and weights provided by the technocrats and the indigenes in the district as a way of demonstrating how landfill siting impasse can be resolved by incorporating the various stakeholders. The results obtained provided clear areas for landfill sites in the study area from the technocratic and the indigenous perspectives. However, the technocratic perspective failed to include an important cultural criterion, sacred groves, as a factor. The indigenous perspective also compromised on the factor related to nearness to residential areas, and is equally not sufficient on its own. The optimal landfill sites, which meets the expectations of both the technocrats and indigenes, was identified. This perspective has produced technically favourable and socio-culturally acceptable landfill site. However, it is recommended an environmental impact assessment (EIA) be conducted to identify the full environmental and social cost of the site. It is concluded that in landfill site selection much attention be given to cultural factors in the same way as the technical factors.  相似文献   
17.

Background

In June 2018, the European Parliament and Council of the European Union adopted a legislative regulation for incorporating greenhouse gas emissions and removals from Land Use, Land Use Change and Forestry (EU-LULUCF) under its 2030 Climate and Energy Framework. The LULUCF regulation aim to incentivise EU Member States to decrease greenhouse gas emissions and increase removals in the LULUCF sector. The regulation, however, does not set a target for increasing the LULUCF carbon sink, but rather includes a ‘no net debit’ target for LULUCF (Forests and Agricultural soils). For Managed Forest Land (MFL) an accounting framework with capped credits for additional mitigation against a set forest reference level (FRL) was agreed for 2021–2030. The FRL gives the projected future carbon sink in the two compliance periods 2021–2025 and 2026–2030 under “continuation of forest management practices as they were in the reference period 2000–2009”. This FRL was disputed by some Member States as it was perceived to put a limit on their future wood harvesting from MFL. Here we simulated with the EFISCEN European forest model the “continuation of forest management practices” and determined the corresponding wood harvest for 26 EU countries under progressing age classes.

Results

The simulations showed that under “continuation of forest management practices” the harvest (wood removals) in the 26 EU countries as a whole can increase from 420 million m3/year in 2000–2009 to 560 million m3/year in 2050 due to progressing age classes. This implies there is a possibility to increase absolute wood harvests without creating debits compared to the forest reference level. However, the manner in which ‘continuation of forest management’ developed with a progressing age class development over time, meant that in some countries the future harvesting exceeded 90% of the increment. Since this generally is considered to be unsustainable we additionally set a harvesting cut-off as max 90% of increment to be harvested for each individual country as a possible interpretation of sustainability criteria that are included in the regulation. Using this additional limit the projected harvest will only increase to 493 million m3/year.

Conclusions

The worry from Member States (MS) that the FRL will prevent any additional harvesting seems unwarranted. Due to differences between Member States concerning the state of their forest resources, the FRL as a baseline for harvesting works out very differently for the different Member States. The FRL may have other unforeseen consequences which we discuss. Under all scenarios the living forest biomass sink shows a decline. This can be counteracted through incentivising measures under Climate Smart Forestry.
  相似文献   
18.
Following Early Cretaceous nappe stacking, the Eastern Alps were affected by late-orogenic extension during the Late Cretaceous. In the eastern segment of this range, a Late Cretaceous detachment separates a very low- to low-grade metamorphic cover (Graz Paleozoic Nappe Complex, GPNC) above a low- to high-grade metamorphic basement. Synchronously, the Kainach Gosau Basin (KGB) collapsed and subsided on top of the section.Metamorphism of organic material within this section has been investigated using vitrinite reflectance data and Raman spectra of extracted carbonaceous material. In the southern part of the GPNC, vitrinite reflectance indicates a decrease in organic maturity towards the stratigraphic youngest unit. The remaining part of the GPNC is characterized by an aureole of elevated vitrinite reflectance values and Raman R2 ratios that parallels the margins of the GPNC. Vitrinite reflectance in the KGB shows a steep coalification gradient and increases significantly towards the western basin margin. The observed stratigraphic trend in the southern GPNC is a result of deep Paleozoic to Early Cretaceous burial. This maturity pattern was overprinted along the margins by advective heat and convective fluids during Late Cretaceous to Paleogene exhumation of basement rocks.During shearing, the fault zone was heated up to ca. 500 °C. This overprint is explained by a two-dimensional thermal model with a ramp-flat fault geometry and a slip rate of 1 to 1.5 cm/year during 5 Ma fault movement. The collapse basin above the detachment subsided in a thermal regime which was characterized by relaxing isotherms.  相似文献   
19.
A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany.  相似文献   
20.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号