首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
测绘学   2篇
大气科学   3篇
地球物理   17篇
地质学   40篇
海洋学   3篇
天文学   10篇
自然地理   16篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有91条查询结果,搜索用时 812 毫秒
11.
12.
The direct H2Oliquid–H2Ovapour equilibration method utilizing laser spectroscopy (DVE-LS) is a way to measure soil pore water stable isotopes. Various equilibration times and calibration methods have been used in DVE-LS. Yet little is known about their effects on the accuracy of the obtained isotope values. The objective of this study was to evaluate how equilibration time and calibration methods affect the accuracy of DVE-LS. We did both spiking and field soil experiments. For the spiking experiment, we applied DVE-LS to four soils of different textures, each of which was subjected to five water contents and six equilibration times. For the field soil experiment, we applied three calibration methods for DVE-LS to two field soil profiles, and the results were compared with cryogenic vacuum distillation (CVD)-LS. Results showed that DVE-LS demonstrated higher δ2H and δ18O as equilibration time increased, but 12 to 24 hr could be used as optimal equilibration time. For field soil samples, DVE-LS with liquid waters as standards led to significantly higher δ2H and δ18O than CVD-LS, with root mean square error (RMSE) of 8.06‰ for δ2H and 0.98‰ for δ18O. Calibration with soil texture reduced RMSE to 3.53‰ and 0.72‰ for δ2H and δ18O, respectively. Further, calibration with both soil texture and water content decreased RMSE to 3.10‰ for δ2H and 0.73‰ for δ18O. Our findings conclude that the calibration method applied may affect the measured soil water isotope values from DVE-LS.  相似文献   
13.
14.
Soil erosion is one of the most important environmental problems distributed worldwide. In the last decades, numerous studies have been published on the assessment of soil erosion and the related processes and forms using empirical, conceptual and physically based models. For the prediction of the spatial distribution, more and more sophisticated stochastic modelling approaches have been proposed – especially on smaller spatial scales such as river basins. In this work, we apply a maximum entropy model (MaxEnt) to evaluate badlands (calanchi) and rill–interrill (sheet erosion) areas in the Oltrepo Pavese (Northern Apennines, Italy). The aim of the work is to assess the important environmental predictors that influence calanchi and rill–interrill erosion at the regional scale. We used 13 topographic parameters derived from a 12 m digital elevation model (TanDEM-X) and data on the lithology and land use. Additional information about the vegetation is introduced through the normalized difference vegetation index based on remotely sensed data (ASTER images). The results are presented in the form of susceptibility maps showing the spatial distribution of the occurrence probability for calanchi and rill–interrill erosion. For the validation of the MaxEnt model results, a support vector machine approach was applied. The models show reliable results and highlight several locations of the study area that are potentially prone to future soil erosion. Thus, coping and mitigation strategies may be developed to prevent or fight the soil erosion phenomenon under consideration. © 2020 John Wiley & Sons, Ltd.  相似文献   
15.
Permeable pavements and similar stormwater control devices have not been exploited in the UK, in part because their adoption has been hindered by a lack of detailed knowledge of their hydrological performance. This paper describes a research programme that produced detailed information on the hydrological behaviour of a car park surface. The study involved the construction of full‐scale permeable pavement model car park structures and a rainfall simulator for use in the laboratory. A monitoring procedure was developed in order to measure inputs and changes in drainage, storage and evaporation over short and long time‐scales (2 hours to 3 months). A range of simulated rainfalls, which varied in intensity and duration, was applied to the model car park surfaces. Hydrological processes were monitored over an 18‐month period. Results demonstrated that evaporation, drainage and retention in the structures were strongly influenced by the particle size distribution of the bedding material and by water retention in the surface blocks. In general, an average of 55% of a one‐hour duration, 15 mm h−1 rainfall event could be retained by an initially air‐dry structure. Subsequent simulations demonstrated that 30% of a one‐hour duration, 15 mm h−1 rainfall event could be stored by an initially wet structure (with a minimum time interval between rainfall applications of 72 hours). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
16.
A reply to a recent paper by Setten.  相似文献   
17.
18.
The effect of Cu(II) ions on the froth flotation of ZnS in the absence of any collector has been studied in a Fuerstenau microflotation cell. The flotation of pure synthetic ZnS, in both cubic and hexagonal modifications, can be greatly enhanced by the adsorption of traces of Cu(II) ions. In the case of cubic ZnS, the “activating” effect of Cu(II): (a) involves the stoichiometric replacement of one Zn(II) ion in the lattice by one Cu(II) ion from solution at a rate which is independent of pH (1–5); (b) is noticeable at coverages corresponding to as little as 0.1% of a monolayer, reaches a maximum at coverages of 2–100% of a monolayer, and decreases again at higher coverages; (c) is unaffected by the presence or absence of O2, by variation of the pH of flotation (6–10), by heating in vacuum at 250°C for two hours or by storing in the dry state for over one year; and (d) does not appear to involve any significant change in surface area or in the state of aggregation of the particles.  相似文献   
19.
The effect of three hydrophilic non-electrolytes on the flotation of ZnS has been studied using a Fuerstenau microflotation cell. The rate of flotation increases with increasing concentrations of urea(OC(NH2)2), but is unaffected by thiourea and slightly decreased by sucrose. This effect of urea was observed with all samples of ZnS (synthetic and natural) studied, is unaffected by extensive purification of the urea and by the presence or absence of O2, and is reversed by dilution. Urea also increases the rate of flotation (in a Partridge and Smith cell) in the absence of frother. Surface tension measurements showed the absence of detectable concentrations of surfactants in the urea. The presence of urea has no effect on the rate of sedimentation (i.e. on the degree of aggregation) of ZnS or on the volume of water carried over during flotation. It is suggested that the effect of urea is (at least in part) to increase the rate of bubble-particle attachment by modifying the structure of water.  相似文献   
20.
In geologic materials, petroleum, and the environment, selenium occurs in various oxidation states (VI, IV, 0, -II), mineralized forms, and organo-Se complexes. Each of these forms is characterized by specific chemical and biochemical properties that control the element’s solubility, toxicity, and environmental behavior. The organic rich chalks and shales of the Upper Cretaceous Niobrara Formation and the Pierre Shale in South Dakota and Wyoming are bentoniferous stratigraphic intervals characterized by anomalously high concentrations of naturally occurring Se. Numerous environmental problems have been associated with Se derived from these geological units, including the development of seleniferous soils and vegetation that are toxic to livestock and the contamination of drinking water supplies by Se mobilized in groundwater.This study describes a sequential extraction protocol followed by speciation treatments and quantitative analysis by Hydride Generation-Atomic Absorption Spectroscopy. This protocol was utilized to investigate the geochemical forms and the oxidation states in which Se occurs in these geologic units. Organic Se and di-selenide minerals are the predominant forms of Se present in the chalks, shales, and bentonites, but distinctive variations in these forms were observed between different sample types. Chalks contain significantly greater proportions of Se in the form of di-selenide minerals (including Se associated with pyrite) than the shales where base-soluble, humic, organo-Se complexes are more prevalent. A comparison between unweathered samples collected from lithologic drill cores and weathered samples collected from outcrop suggest that the humic, organic-Se compounds in shale are formed during oxidative weathering and that Se oxidized by weathering is more likely to be retained by shale than by chalk. Selenium enrichment in bentonites is inferred to result from secondary processes including the adsorption of Se mobilized by groundwater from surrounding organic rich sediments to clay mineral and iron hydroxide surfaces, as well as microbial reduction of Se within the bentonitic intervals. Distinct differences are inferred for the biogeochemical pathways that affected sedimentary Se sequestration during periods of chalk accumulation compared to shale deposition in the Cretaceous seaway. Mineralogy of sediment and the nature of the organic matter associated with each of these rock types have important implications for the environmental chemistry and release of Se to the environment during weathering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号