首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   4篇
  国内免费   3篇
测绘学   5篇
大气科学   44篇
地球物理   100篇
地质学   164篇
海洋学   27篇
天文学   67篇
综合类   1篇
自然地理   41篇
  2021年   7篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   22篇
  2012年   12篇
  2011年   12篇
  2010年   15篇
  2009年   24篇
  2008年   17篇
  2007年   22篇
  2006年   13篇
  2005年   16篇
  2004年   9篇
  2003年   16篇
  2002年   12篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   4篇
  1976年   8篇
  1975年   10篇
  1974年   4篇
  1973年   6篇
  1969年   4篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
81.
Properties of acoustic-gravity waves in the upper atmosphere of Venus are studied using a two-fluid model which includes the effects of wave-induced diffusion in a diffusively separated atmosphere. In conjunction with neutral mass spectrometer data from the Pioneer Venus orbiter, the theory should provide information on the distribution of wave sources in the Venus upper atmosphere. Observed wave structure in species density measurements should generally have periods ?30–35 min, small N2, CO, and O amplitudes, and highly variable phase shifts relative to CO2. A near resonance may exist between downward phase-propagating internal gravity and diffusion waves near the 165-km level at periods near 29 min. As a result, if very large He wave amplitudes are observed near this level, it will indicate that the wave source is below the 150- to 175-km level and that the exospheric temperature is close to 350°K. Wave energy dissipation may be an important mechanism for heating of the nightside Venus thermosphere. Large-density oscillations in stratospheric cloud layer constituents are also possible and may be detectable by the Pioneer Venus large probe neutral mass spectrometer.  相似文献   
82.
Gradient theory (GT), a form of density functional theory (DFT), was applied to water, methanol, and ethanol using the cubic perturbed hard body (CPHB) equation of state (EOS). Compared to the standard form of classical nucleation theory (CNT), the GT results for water showed an improved temperature dependence, but the supersaturation dependence was slightly poorer. GT and several forms of CNT were also found to be in good agreement with a single high T molecular dynamics rate for TIP4P water. The rates predicted by GT for methanol and ethanol were improved by several orders of magnitude compared to CNT, but no improvement in the predicted temperature dependence of the rates was found.  相似文献   
83.
We present an interior model of Saturn with an ice-rock core,a metallic region,an outer molecular envelope and a thin transition layer between the metallic and molecular regions.The shape of Saturn’s 1 bar surface is irregular and determined fully self-consistently by the required equilibrium condition.While the ice-rock core is assumed to have a uniform density,three different equations of state are adopted for the metallic,molecular and transition regions.The Saturnian model is constrained by its known mass,its known equatorial and polar radii,and its known zonal gravitational coefficients,J_(2n),n=1,2,3.The model produces an ice-rock core with equatorial radius 0.203 R_S,where R_S is the equatorial radius of Saturn at the 1-bar pressure surface;the core densityρ_c=10388.1 kgm~(3)corresponding to 13.06 Earth masses;and an analytical expression describing the Saturnian irregular shape of the 1-bar pressure level.The model also predicts the values of the higher-order gravitational coefficients,J_8,J_10 and J_12,for the hydrostatic Saturn and suggests that Saturn’s convective dynamo operates in the metallic region approximately defined by 0.2 R_Sre0.7 R_S,where r_e denotes the equatorial radial distance from the Saturnian center of figure.  相似文献   
84.
Groundwater bores act as traps. Net samplers are regularly used for sampling this type of trap for fauna. To enable direct comparisons of faunal communities in groundwater bores and stream sediments, stream sediment tubes were built similar to groundwater bores and were sampled with net samplers for fauna. These stream sediment tubes consisted of a tube anchored in the stream sediment, also called interstitial space. To test the efficacy of this trap method in stream sediments, it was compared to another type of trap, Hahn's trap. Faunal communities sampled by a net in the stream sediment tubes did not differ hugely from fauna in Hahn's trap samples. Physical and chemical factors of sampled water in both the stream sediment tubes, the surrounding interstitial sediments and the second type of traps, Hahn's traps, showed that water in both the tubes and Hahn's traps was closely related to interstitial water. The net sampler is inexpensive and easy to handle. It is suggested that sampling stream tubes with nets may be an appropriate method for long‐term monitoring studies.  相似文献   
85.
Sehlke G  Jacobson J 《Ground water》2005,43(5):722-730
System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multipurpose national laboratory managed by the Department of Energy, has developed a system dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River basin, a transboundary basin that includes portions of Idaho, Utah, and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found that system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory, and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple "what-if" scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause-effect relationships in large-scale hydrological systems, for integrating disparate data, for incorporating output from traditional hydraulic/hydrologic models, and for integration of interdisciplinary data, information, and criteria to support better management decisions.  相似文献   
86.
The collapse time for a cluster of equal-mass stars is usually stated to be either 330 central relaxation times (trc) or 12-19 half-mass relaxation times (trh). But the first of these times applies only to the late stage of core collapse, and the second only to low-concentration clusters. To clarify how the time depends on the density profile, the Fokker-Planck equation is solved for the evolution of a variety of isotropic cluster models, including King models, models with power-law density cusps of ρ ∼ r−γ, and models with nuclei. The collapse times for King models vary considerably with the cluster concentration when expressed in units of trc or trh, but vary much less when expressed in units of trc divided by a dimensionless measure of the temperature gradient in the core. Models with cusps have larger temperature gradients and evolve faster than King models, but not all of them collapse: those with 0 < γ < 2 expand because they start with a temperature inversion. Models with nuclei collapse or expand as the nuclei would in isolation if their central relaxation times are short; otherwise their evolution is more complicated. Suggestions are made for how the results can be applied to globular clusters, galaxies, and clusters of dark objects in the centers of galaxies.Scott D. Tremaine  相似文献   
87.
The light deviation caused by the gravitational potential in the vicinity of the sun could be used as a means of focussing radiation that cannot be focussed easily otherwise. The gravitational lens formed by the sun is not stigmatic, but does have the advantage of being achromatic and acts identically on all types of mass-less radiations. For a source at infinity, its geometrical characteristics present a “caustic” line starting at 550 astronomical units (UA) downstream from the sun. In a plane perpendicular to that caustic line, images of distant objects are formed.The perturbations by the solar corona plasma will significantly blur electromagnetic radiation for wavelengths longer than those of the IR domain. At shorter wavelengths, for example the γ domain, the focussing process could lead to 108 amplification factors. In order to reach the regions where images are formed, long distance space missions are necessary. Once launched, missions of this type would be dedicated to a single field. Some possible targets are considered, such as Sagitarius A observed in X and γ rays.In this paper we study the point spread function (PSF) of the sun as a gravitational lens. Taking into account perturbations by the planets, the non sphericity of the sun and coronal plasma index, we derive limits within which such observations could be possible.  相似文献   
88.
Gerald G. Schaber 《Icarus》1980,43(3):302-333
A prelimanary geologic map, representing 26.5% of the surface of Io, has been compiled using best-resolution (0.5 to 5 km/line pair) Voyager 1 images and (as a base) a preliminary pictorial map of Io. Nine volcanic units are identified, including materials of mountains (1.9% of total area), plains (49.6%), flows (31.1%), cones (0.1%), and crater vents (4.0%), in addition to seven types of structural features. Photogeologic evidence indicates a dominantly silicate composition for the mountain material, which supports heights of at least 9 ± 1 km. Sulfur flows of diverse viscosity and sulfur-silicate mixtures are thought to compose the pervasive plains. Pit crater and shield crater vent wall scarps reach heights of 2 km and layered plains boundary scarps have estimated heights of 150 to 1700 m; such scarps indicate a material with considerable strenght. A cumulative, volcanic crater size-frequency distribution plot has been prepared using 170 mapped Ionian vents with diameters > 14 km; the shape and slope of the curve are like those for impact craters on other bodies in the solar system, attesting to a similar nonrandom distribution to crater diameters and a surplus of small craters. Io's equatorial zone has six times the number of vents per unit area as the south polar zone. No craters of unequivocal impact origin have been identified on Io to date. A total of 151 lineaments and grabens are recognized with four dominant azimuthal trends forming two nearly orthogonal sets spaces 110° apart (N 85° E, N 25° W and N 45° E, N 55°W). The mapped area lies within the longitudinal zone (250 to 323°) of least-abundant SO2 frost, indicating that other sulfurous components dominate the upper surface layers in this area.  相似文献   
89.
The solution to the problem of the motion of the Moon relative to spatial irregularities in the interplanetary magnetic field is found. The lunar electrical conductivity is modeled by a two-layer conductivity profile. For the interaction of the Moon with the corotating sector structure of the interplanetary magnetic field it is found that the magnetic field in the lunar shell is the superposition of an oscillatory uniform field, an oscillatory dipole field and anoscillatory field that is toroidal about the axis of the motional electric field. With various lunar conductivity models and the theory of this paper, lunar surface magnetometer data can be quantitatively interpreted to yield information on the conductivity and consequently the temperature of the lunar core.Presently visiting the Max-Planck-Institut für Physik und Astrophysik, München, Germany.  相似文献   
90.
Degradation in Cemented Marine Clay Subjected to Cyclic Compressive Loading   总被引:1,自引:0,他引:1  
The influence of cyclic loading on the strength and deformation behavior of cemented marine clay has been studied. This marine clay is of recent Pleistocene origin and deposited in a shallow water marine environment. Open pits were dug in sheeted enclosures and from these pits, undisturbed samples were taken for strength testing. A series of standard triaxial shear tests and stress controlled one-way cyclic load tests were conducted at consolidation stress ranges below and above the preconsolidation pressure. For the stress levels below the preconsolidation pressure, the cyclic loading has brought about the collapse of the cementation bond through an increase in strains, and at higher pressure ranges, the soil behaves like typical soft clay. This experiment studied the rate of development of strain and pore water pressure and shows that rate is a function of number of cycles, applied stress, and stress history. In addition, soil degradation during cyclic loading is studied in terms of Degradation Index. Attempt has been made to predict stain, pore water pressure, and degradation index through an empirical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号