首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   15篇
  国内免费   1篇
测绘学   5篇
大气科学   7篇
地球物理   48篇
地质学   142篇
海洋学   13篇
天文学   122篇
自然地理   33篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   8篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   14篇
  2012年   11篇
  2011年   11篇
  2010年   13篇
  2009年   21篇
  2008年   15篇
  2007年   17篇
  2006年   15篇
  2005年   12篇
  2004年   8篇
  2003年   10篇
  2002年   16篇
  2001年   6篇
  2000年   9篇
  1999年   13篇
  1998年   10篇
  1997年   5篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1968年   2篇
  1934年   1篇
  1882年   1篇
  1877年   2篇
排序方式: 共有370条查询结果,搜索用时 406 毫秒
191.
Spectral analysis of 96 yr of Bering Sea storm records reported in the Nome News (1899–1903) and Nome Nugget (1901–1993) newspapers indicate regularities in the 11-, 5–7- and 3-yr periods. Statistical tests on the 11-yr period found no statistically significant correlation with sunspot cyclicity despite a tendency toward maximum storminess during low sunspot periods. The 3- and 5–7-yr cycles may correlate with variability in the El Niño Southern Oscillation and easterly shifts in the mean position of North Pacific low pressure anomalies. Storm surges were infrequent from 1916 to 1928 and 1947 to 1959, while the most frequent and intense storms hit during 1900–1913, 1936–1946, 1974–1976 and in 1992.  相似文献   
192.
Mineral dissolution rates have been rationalized in the literature by surface complexation models (SCM) and morphological and geometric models (GM), and reconciliation of these conceptually different yet separately highly successful models is an important goal. In the current work, morphological alterations of the surface are observed in real time at the microscopic level by atomic force microscopy (AFM) while dissolution rates are simultaneously measured at the macroscopic level by utilizing the AFM fluid cell as a classic flow-through reactor. Rhodochrosite dissolution is studied from pH = 2 to 11 at 298 K, and quantitative agreement is found between the dissolution rates determined from microscopic and macroscopic observations. Application of a SCM model for the interpretation of the kinetic data indicates that the surface concentration of >CO3H regulates dissolution for pH < 7 while the surface concentration of >MnOH2+ regulates dissolution for pH > 7. A GM model explains well the microscopic observations, from which it is apparent that dissolution occurs at steps associated with anisotropic pit expansion. On the basis of the observations, we combine the SCM and GM models to propose a step-site surface complexation model (SSCM), in which the dissolution rates are quantitatively related to the surface chemical speciation of steps. The governing SSCM equation is as follows: R = χ1/2(kco + kca)[>CO3H] + χ1/2(kmo + kma)[>MnOH2+ ], where R is the dissolution rate (mol m−2 s−1), 2χ1/2 is the fraction of surface sites located at steps, [>CO3H] and [>MnOH2+ ] are surface concentrations (mol m−2), and kco, kca, kmo, and kma are the respective dissolution rate coefficients (s−1) for the >CO3H and the >MnOH2+ surface species on obtuse and acute steps. We find kco = 2.7 s−1, kca = 2.1 × 10−1 s−1, kmo = 4.1 × 10−2 s−1, kma = 3.7 × 10−2 s−1, and χ1/2 = 0.015 ± 0.005. The rate coefficients quantify the net result of complex surface step processes, including double-kink initiation and single-kink propagation. We propose that the SSCM model may have general applicability for dissolution far from equilibrium of flat mineral surfaces of ionic crystals, at least those that dissolve by step retreat.  相似文献   
193.
194.
The nature of gold dispersion in soils and stream sediments associated with a copper-gold-mineralized system in northeastern Thailand has been investigated as a basis for identifying appropriate geochemical exploration techniques for the search for comparable deposits in similar environments.Soils were collected with varying relationships to mineralization as a basis for determining sample representativity, size distribution of gold, variation with soil horizon and possible pathfinder elements. Similarly, stream sediments were collected to estimate sample representativity, size distribution of gold, variation of gold with depth in the stream sediment profile and to compare the relative recoveries of gold in field-panned and laboratory-prepared heavy-mineral concentrates. Samples were analyzed for Au and potential indicator elements by a variety of methods but mostly by instrumental neutron activation analysis.Results indicate the consistent distribution of fine-grained gold in soils which allows Au analysis of relatively small samples from B-horizon soils to be used effectively and reliably to identify the surficial patterns of gold mineralization in the study area. Anomalous patterns of other indicator elements, Co, As, Cu, Sb, W, Pb, Zn, Ag, Fe and Mn, may contribute additional information regarding type of mineralization. This finding indicates the effectiveness of soil surveys in gold exploration, particularly in areas of deep weathering where fresh bedrock exposures are infrequent.Unlike soils, size distributions of gold in stream sediments, as a result of the local flow regime, vary both between sampling sites and at depths within a sampling site. Exploration requires Au analysis of the fine fraction (minus 63 μm) of active stream sediments to reduce the problem of sampling representativity. The presence of coarse-grained gold in the stream channel has drawn attention to the possible benefit of using the conventional field-panning method as a semiquantitative technique for providing immediate results. However, highly erratic distribution of pannable gold on a very local scale together with variable proportions of the total gold recovered in field-panned or heavy-mineral concentrates highlights a potentially serious drawback of the method. Combination of analysis of the minus 63 μm fraction and field panning appears warranted to cover the possible existence of gold of a wide size range in stream sediments.The overall results indicate the utility of geochemical exploration techniques in the search for gold mineralization. However, particular care is necessary in the design and implementation of geochemical techniques to ensure maximum reliability of exploration.  相似文献   
195.
Surficial sediment samples were collected at 47 stations in Little Traverse Bay, Lake Michigan, to determine the geochemical associations between certain rare earth elements (REE's) and trace metals. Each sample was analyzed for carbonate carbon, organic carbon, grain size, and the elements Al, Ca, Ce, Co, Cr, Eu, Fe, Hf, La, and Mn. Two distinct Ce subpopulatins were identified by graphical analysis, and an R-mode factor analysis was applied to data from the “enriched” Ce subpopulation (18 samples). Results show that the REE's and trace metals are primarily enriched in the authigenic phase of these sediments. Partial correlation analyses indicate that the REE's are primarily associated with hydrous Fe oxides relative to organic matter in this phase. The ratio of Ce/La concentrations increased markedly from the bay margins to the central trough of the bay, indicating that Ce, similar to Fe, exhibits a variable oxidation state in the authigenic phase of nearshore fine-grained sediments. The results of the present study suggest that the REE's and trace metals behave coherently in the authigenic phase of recent lacustrine sediments, and the REE's may be useful as geochemical tracers to differentiate between trace metal enrichments in surface sediments as a result of diagenesis and pollution loadings.  相似文献   
196.
197.
198.
The finite element method is employed in the prediction of the dynamic transient response of two- and three-dimensional solids exhibiting geometric (large deformations) and material (elasto-plastic) non-linearities. Explicit time marching schemes are adopted for integration of the dynamic equilibrium equation and a diagonal ‘lumped’ mass matrix is employed with a special procedure applicable to parabolic isoparametric elements. A variety of problems are presented including a solid/fluid interaction situation, and the method is shown to be able to solve economically many problems of dynamic or catastrophic nature which can occur in such structures as nuclear reactors, containment vessels, etc.  相似文献   
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号