首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2265篇
  免费   43篇
  国内免费   26篇
测绘学   48篇
大气科学   107篇
地球物理   576篇
地质学   770篇
海洋学   238篇
天文学   372篇
综合类   10篇
自然地理   213篇
  2021年   21篇
  2020年   31篇
  2019年   28篇
  2018年   42篇
  2017年   32篇
  2016年   63篇
  2015年   44篇
  2014年   55篇
  2013年   120篇
  2012年   64篇
  2011年   114篇
  2010年   78篇
  2009年   95篇
  2008年   82篇
  2007年   92篇
  2006年   85篇
  2005年   90篇
  2004年   76篇
  2003年   53篇
  2002年   74篇
  2001年   40篇
  2000年   38篇
  1999年   43篇
  1998年   28篇
  1997年   30篇
  1996年   32篇
  1995年   41篇
  1994年   33篇
  1993年   26篇
  1992年   25篇
  1991年   32篇
  1990年   23篇
  1989年   24篇
  1988年   34篇
  1987年   27篇
  1986年   24篇
  1985年   35篇
  1984年   38篇
  1983年   41篇
  1982年   32篇
  1981年   30篇
  1980年   27篇
  1979年   32篇
  1978年   24篇
  1977年   33篇
  1976年   31篇
  1975年   25篇
  1973年   19篇
  1972年   22篇
  1971年   18篇
排序方式: 共有2334条查询结果,搜索用时 15 毫秒
941.
A generalized model for predicting the potential of geographic areas for mineral exploration is developed using computers and mathematical techniques. A cellular approach is adopted and each area is divided into cells; the data base is transformed into a computer processable form by digitizing data over each cell. Control cells are selected from a control area by two a priori subjective models using multiple linear regression and filtering techniques. These control cells are used to develop weighting factors for computer-transformed variables. The evaluation and prediction of cells are made using an evaluation model, wherein products of weighting factors and corresponding transformed variables are added to give a probability score for each cell. In the example analysis, 7.76% of cells are selected as predicted cells and checked for mining in the cell areas by comparing them with a mining data base. Of the total predicted cells, 38.13% are classified as first-order prospects and the remaining predicted cells are classified into second- and third-order prospects. The success of the prediction and the open structure of the model implies a successful, generalized model with capabilities of evaluating large areas and predicting the potential in any exploration program.Presented at the Third Decennial International Conference on Geophysical and Geochemical Exploration for Minerals and Groundwater, Sept. 27–Oct 1, 1987, Toronto, Canada.  相似文献   
942.
After a pelagic larval phase, infaunal bivalves undergo metamorphosis and transition to the underlying sediments to begin the benthic stage of their life history, where they explore and then either accept or reject sediments. Although the settlement cues used by juvenile infaunal bivalves are poorly understood, here we provide evidence that carbonate saturation state is a significant chemical cue in both direct observation laboratory studies and field manipulations. In the laboratory, plantigrade-stage Mercenaria mercenaria (200 μm shell height) showed a significant positive relationship between percent burrowed and Ωaragonite, with an increasing probability of settlement with increasing saturation state. In the field, we increased bivalve recruitment by a factor of three in a 30-day field study by raising the pH (~0.3) and saturation state of surface sediments by buffering sediments with crushed shell (CaCO3). The susceptibility of infaunal bivalves to dissolution mortality and the tight coupling of other sedimentary biogeochemical processes with carbonate dynamics suggest that mineral thermodynamics may be an overarching cue new settlers are responding to.  相似文献   
943.
This article describes a study employing a risk-assessment methodology for evaluating uncertain future climatic conditions. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions, the study estimated the impacts from responses to climate change on U.S. state- and national-level economic activity. The study used results of the climate-model CMIP3 dataset developed for the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report to 1) estimate a proxy for representing climate uncertainty over the next 40 years, 2) map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and 3) perform a detailed, economy-wide, 70-industry analysis of economic impacts among the interdependent lower-48 states for the years 2010 through 2050. The analysis determined the interacting industry-level effects, employment impacts at the state level, interstate population migration, consequences to personal income, and ramifications for the U.S. trade balance. When compared to a baseline economic forecast, the calculations produced an average risk of damage of $1 trillion to the U.S. economy from climate change over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs. Added uncertainty would increase the estimated risk.  相似文献   
944.
The reactivity of 2 µM molecular iodine in seawater toward various organic compounds containing aromatic, -keto, amino, olefinic and sugar functional groups was investigated. More detailed studies have been made of the reduction kinetics with salicylic acid, -ketoglutaric acid and the polypeptide oxidized glutathione, particularly to establish whether variation over the pH range 4–9 would provide a similar reduction reactivity or fingerprint to that of molecular iodine added to natural seawater. The data indicates that compounds with only one functional group react with first order kinetics whereas compounds with multiple functional groups show more complex behaviour. Kinetic and thermodynamic modelling indicates that HOI is the main iodine species reacting with organic matter at seawater pH of 8.2. Based on the pH fingerprints, peptides and compounds containing carbonyl or -keto groups are the key reductants of molecular iodine added to seawater. These compounds form C-I and N-I bonds which can allow for a rich organic iodine chemistry in seawater. The model compound results are discussed in relation to oceanic processes.  相似文献   
945.
The European Commission is supporting the real-time database for high-resolution neutron monitor measurements (NMDB) as an e-Infrastructures project in the Seventh Framework Programme in the Capacities section. The realization of the NMDB will provide the opportunity for several applications most of which will be implemented in real-time. An important application will be the establishment of an Alert signal when dangerous solar particle events are heading to the Earth, resulting into a ground level enhancement (GLE) registered by neutron monitors (NMs). The cosmic ray community has been occupied with the question of establishing such an Alert for many years and recently several groups succeeded in creating a proper algorithm capable of detecting space weather threats in an off-line mode. A lot of original work has been done to this direction and every group working in this field performed routine runs for all GLE cases, resulting into statistical analyses of GLE events. The next step was to make this algorithm as accurate as possible and most importantly, working in real-time. This was achieved when, during the last GLE observed so far, a real-time GLE Alert signal was produced. In this work, the steps of this procedure as well as the functionality of this algorithm for both the scientific community and users are being discussed. Nevertheless, the transition of the Alert algorithm to the NMDB is also being discussed.  相似文献   
946.

The Biscayne Aquifer (Florida, USA) is a coastal, shallow, unconfined, and heterogeneous aquifer with high water tables, composed of less-permeable sand to highly permeable karstic limestone. These properties make the Biscayne Aquifer one of the world’s most productive groundwater resources. The aquifer’s high yield and non-Darcian flow cause challenges for estimating aquifer parameters, which are essential for understanding groundwater processes and managing and protecting the groundwater resources. Water-table fluctuations in the Biscayne Aquifer are associated with astronomical tidal forces and gate operations on canal water-control structures. Analysis of observed groundwater level fluctuations can provide an understanding of the connectivity between the aquifer, Biscayne Bay, and the water level in the canals. Further, groundwater level fluctuations can be used for aquifer parameter estimation. In this research, observed ocean water levels measured at tidal stations and groundwater levels are fitted to Jacob’s analytical solution, where the amplitude of the groundwater head fluctuation decreases exponentially, and the time lag increases with distance from the shore. Observed groundwater levels were obtained from monitoring wells along the Miami-Dade shore and the barrier island of Miami Beach. Results indicate that Jacob’s solution is effective for aquifer parameter estimation in Miami Beach, where monitoring wells are closer to the shore. Estimated hydraulic conductivity appears to increase by four orders of magnitude to approximately 1 m s–1 as the distance from shore increases. Constructing monitoring wells closer to the shore in Miami-Dade County and elsewhere would permit improved aquifer parameter estimation and support enhanced groundwater modeling efforts.

  相似文献   
947.
Land surface models and Earth system models that include Arctic landscapes must capture the abrupt hydrological transitions that occur during the annual thaw and deepening of the active layer. In this work, stable water isotopes (δ2H and δ18O) are used to appraise hydrologically significant transitions during annual landscape thaw at the Barrow Environmental Observatory (Utqiaġvik, Alaska). These hydrologically significant periods are then linked to annual shifts in the landscape energy balance, deduced from meteorological data and described by the microclimatic periods: Winter, Pre-Melt, Melt, Post-Melt, Summer, and Freeze-Up. The tight coupling of the microclimatic periods with the hydrological transitions supports the use of microclimatic periods as a means of linking polygonal surface water hydrology to meteorological datasets, which provides a mechanism for improving the representation of polygonal surface water hydrology in process-based models. Rayleigh process reconstruction of the isotopic changes revealed that 19% of winter precipitation was lost to sublimation prior to melting and that 23% of surface water was lost to evaporation during the first 10 days post-melt. This agrees with evaporation rates reported in a separate study using an eddy covariance flux tower located nearby. An additional 17% was lost to evaporation during the next 33 days. Stable water isotopes are also used to identify the dominant sources of surface water to various hydrogeomorphological features prevalent in polygonal terrain (a lake, a low centre polygon centre, troughs within the rims of low centre polygons, flat centre polygon troughs, a high centre polygon trough, and drainages). Hydrogeomorphologies that retained significant old water or acted as snow drifts are isotopically distinct during the Melt Period and therefore are easily distinguished. Biogeochemical changes related to the annual thaw are also reported and coupled to the hydrological transitions, which provides insight into the sources and sinks of these ions to and from the landscape.  相似文献   
948.
Inactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River–Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW–NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from  33–15 ka, agreeing with the 30–13 ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16 pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (δ18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW–NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.  相似文献   
949.
The North West Shelf is an ocean‐facing carbonate ramp that lies in a warm‐water setting adjacent to an arid hinterland of moderate to low relief. The sea floor is strongly affected by cyclonic storms, long‐period swells and large internal tides, resulting in preferentially accumulating coarse‐grained sediments. Circulation is dominated by the south‐flowing, low‐salinity Leeuwin Current, upwelling associated with the Indian Ocean Gyre, seaward‐flowing saline bottom waters generated by seasonal evaporation, and flashy fluvial discharge. Sediments are palimpsest, a variable mixture of relict, stranded and Holocene grains. Relict intraclasts, both skeletal and lithic, interpreted as having formed during sea‐level highstands of Marine Isotope Stages (MIS) 3 and 4, are now localized to the mid‐ramp. The most conspicuous stranded particles are ooids and peloids, which 14C dating shows formed at 15·4–12·7 Ka, in somewhat saline waters during initial stages of post‐Last Glacial Maximum (LGM) sea‐level rise. It appears that initiation of Leeuwin Current flow with its relatively less saline, but oceanic waters arrested ooid formation such that subsequent benthic Holocene sediment is principally biofragmental, with sedimentation localized to the inner ramp and a ridge of planktic foraminifera offshore. Inner‐ramp deposits are a mixture of heterozoan and photozoan elements. Depositional facies reflect episodic environmental perturbation by riverine‐derived sediments and nutrients, resulting in a mixed habitat of oligotrophic (coral reefs and large benthic foraminifera) and mesotrophic (macroalgae and bryozoans) indicators. Holocene mid‐ramp sediment is heterozoan in character, but sparse, most probably because of the periodic seaward flow of saline bottom waters generated by coastal evaporation. Holocene outer‐ramp sediment is mainly pelagic, veneering shallow‐water sediments of Marine Isotope Stage 2, including LGM deposits. Phosphate accumulations at ≈ 200 m water depth suggest periodic upwelling or Fe‐redox pumping, whereas enhanced near‐surface productivity, probably associated with the interaction between the Leeuwin Current and Indian Ocean surface water, results in a linear ridge of pelagic sediment at ≈ 140 m water depth. This ramp depositional system in an arid climate has important applications for the geological record: inner‐ramp sediments can contain important heterozoan elements, mid‐ramp sediments with bedforms created by internal tides can form in water depths exceeding 50 m, saline outflow can arrest or dramatically slow mid‐ramp sedimentation mimicking maximum flooding intervals, and outer‐ramp planktic productivity can generate locally important fine‐grained carbonate sediment bodies. Changing oceanography during sea‐level rise can profoundly affect sediment composition, sedimentation rate and packaging.  相似文献   
950.
Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial – interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances.For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial–interglacial (G–I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G–I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G–I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography.Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G–I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号