首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3818篇
  免费   111篇
  国内免费   52篇
测绘学   100篇
大气科学   232篇
地球物理   920篇
地质学   1302篇
海洋学   354篇
天文学   699篇
综合类   18篇
自然地理   356篇
  2022年   27篇
  2021年   43篇
  2020年   56篇
  2019年   52篇
  2018年   94篇
  2017年   86篇
  2016年   100篇
  2015年   84篇
  2014年   102篇
  2013年   203篇
  2012年   109篇
  2011年   179篇
  2010年   149篇
  2009年   169篇
  2008年   151篇
  2007年   153篇
  2006年   147篇
  2005年   131篇
  2004年   127篇
  2003年   94篇
  2002年   129篇
  2001年   66篇
  2000年   74篇
  1999年   65篇
  1998年   56篇
  1997年   56篇
  1996年   48篇
  1995年   60篇
  1994年   45篇
  1993年   43篇
  1992年   48篇
  1991年   46篇
  1990年   36篇
  1989年   34篇
  1988年   42篇
  1987年   47篇
  1986年   41篇
  1985年   58篇
  1984年   68篇
  1983年   68篇
  1982年   64篇
  1981年   54篇
  1980年   52篇
  1979年   54篇
  1978年   33篇
  1977年   48篇
  1976年   47篇
  1975年   33篇
  1974年   28篇
  1973年   28篇
排序方式: 共有3981条查询结果,搜索用时 149 毫秒
911.
We present new imaging polarimetric observations of two Main Belt asteroids, (234) Barbara and (387) Aquitania, taken in the first half of 2008 using the Dual-Beam Imaging Polarimeter on the University of Hawaii 2.2 m telescope, located on Mauna Kea, Hawaii. Barbara had been previously shown to exhibit a very unusual polarization-phase curve by [Cellino, A., Belskaya, I.N., Bendjoya, Ph., di Martino, M., Gil Hutton, R., Muinonen, K., Tedesco, E.F., 2006. Icarus 180, 565-567]. Our observations confirm this result and add Aquitania to the growing class of large inversion angle objects. Interestingly, these asteroids show spinel features in their IR spectra suggesting a mineralogical origin to the phase angle-dependent polarimetric features. As spinel is associated with calcium-aluminum-rich inclusions and carbonaceous chondrites, these large inversion angle asteroids may represent some of the oldest surfaces in the Solar System. Circular as well as linear polarization measurements were obtained but circular polarization was not detected.  相似文献   
912.
We present the results of our Thousand Asteroid Light Curve Survey (TALCS) conducted with the Canada-France-Hawaii Telescope in September 2006. Our untargeted survey detected 828 Main Belt asteroids to a limiting magnitude of g22.5 corresponding to a diameter range of 0.4 km . Of these, 278 objects had photometry of sufficient quality to perform rotation period fits. We debiased the observations and light curve fitting process to determine the true distribution of rotation periods and light curve amplitudes of Main Belt asteroids. We confirm a previously reported excess in the fraction of fast rotators but find a much larger excess of slow rotating asteroids (∼15% of our sample). A few percent of objects in the TALCS size range have large light curve amplitudes of ∼1 mag. Fits to the debiased distribution of light curve amplitudes indicate that the distribution of triaxial ellipsoid asteroid shapes is proportional to the square of the axis ratio, (b/a)2, and may be bi-modal. Finally, we find six objects with rotation periods that may be less than 2 h with diameters between 400 m and 1.5 km, well above the break-up limit for a gravitationally-bound aggregate. Our debiased data indicate that this population represents <4% of the Main Belt in the 1-10 km size range.  相似文献   
913.
We conducted an experiment in conjunction with the total solar eclipse of 29 March 2006 in Libya that measured the coronal intensity through two filters centered at 3850 Å and 4100 Å with bandwidths of ≈?40 Å. The purpose of these measurements was to obtain the intensity ratio through these two filters to determine the electron temperature. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an eight inch, f/10 Schmidt Cassegrain telescope with a thermoelectrically-cooled CCD camera at the focal plane. Results show electron temperatures of 105 K close to the limb to 3×106 K at 1.3R . We describe this novel technique, and we compare our results to other relevant measurements. This technique could be easily implemented on a space-based platform using a coronagraph to produce global maps of the electron temperature of the solar corona.  相似文献   
914.
The Virtual Solar Observatory (VSO) has been developed to allow researchers, educators, and the general public to access data and images from the major sources of on-line solar data. The VSO substantially reduces the effort required to locate disparate data sets, and removes the need for the user to locate the data and learn multiple interfaces. The VSO provides a single interface to about 60 geographically distributed data sets including space- and ground-based sources. These data sets incorporate several physical variables including magnetic field, intensity, Doppler velocity, etc., and all wavelengths from X-ray to radio. All layers of the sun, from the interior to the corona, are included. In this paper we describe the system and present the interface that the user will encounter. We also discuss future enhancements planned for the system.  相似文献   
915.
On Reynolds Averaging of Turbulence Time Series   总被引:1,自引:1,他引:0  
We show that validity of Reynolds averaging for estimating the (ensemble) mean of a turbulence time series requires that the series values be both stationary and uncorrelated. In strict statistical terminology, these two conditions are jointly designated as independent identically distributed (i.i.d.). Moreover, we show that when the series values are correlated, knowledge of the correlation between the values is needed to obtain a reliable estimate of the mean. Last, we contend that a viable averaging algorithm must be Reynolds number (Re) dependent, requiring one version for low Re (Gaussian) turbulence and another for high Re (non-Gaussian) turbulence. Alternatively the median (as opposed to the mean) is recommended as a measure of the central tendency of the turbulence probability density function.  相似文献   
916.
Recent changes in global climate have dramatically altered worldwide temperatures and the corresponding timing of seasonal climate conditions. Recognizing the degree to which species respond to changing climates is therefore an area of increasing conservation concern as species that are unable to respond face increased risk of extinction. Here we examine spatial and temporal heterogeneity in the rate of climate change across western North America and discuss the potential for conditions to arise that may limit the ability of western migratory birds to adapt to changing climates. Based on 52 years of climate data, we show that changes in temperature and precipitation differ significantly between spring migration habitats in the desert southwest and breeding habitats throughout western North America. Such differences may ultimately increase costs to individual birds and thereby threaten the long-term population viability of many species.  相似文献   
917.
We have determined metallographic cooling rates below 975 K for eight main group (MG) pallasites from Ni profiles across taenite lamellae of known crystallographic orientation in metallic regions with Widmanstätten patterns. Comparison with profiles generated by modeling kamacite growth gave cooling rates ranging from 2.5 to 18 K/Myr. Relative cooling rates were also inferred from the sizes of cloudy zone particles in 28 MG pallasites (86-170 nm) and tetrataenite bandwidths in 20 MG pallasites (1050-2170 nm), as these parameters are positively correlated with each other and negatively correlated with the metallographic cooling rates. These three different techniques show that MG pallasites cooled below 975 K at significantly diverse rates. Since samples from the core-mantle boundary should have indistinguishable cooling rates, MG pallasites could not have cooled at this location. Group IIIAB irons, which were previously thought to be core samples from the MG pallasite body, have faster cooling rates (∼50-350 K/Myr) and smaller cloudy zone particle sizes and tetrataenite bandwidths. This shows that IIIAB irons cooled faster than MG pallasites and could not plausibly be from the same body. The absence of related iron meteorites and achondrites and our thermal constraints suggest that MG pallasites cooled at diverse depths in a pallasitic body consisting of well-mixed olivine and metallic Fe-Ni. Such a body may have formed during an impact on a differentiated asteroid or protoplanet that mixed olivine mantle fragments with residual Ir-poor molten metal from the outermost part of a core that chemically resembled the IIIAB core and was ∼80% fractionally crystallized. Separation of the solid core and most of the associated mantle may have resulted from a grazing hit-and-run impact with a larger protoplanet or asteroid. Thermal calculations suggest that the radius of the pallasitic body was 400 km but the likely presence of a regolith would reduce this estimate considerably.  相似文献   
918.
919.
Hafnium, U, Th, and REE content of zircons from the Spirit Mountain batholith in southern Nevada correlate with calculated temperatures from the Ti-in-zircon thermometer to support field and petrologic evidence of rejuvenation of crystal mush and melt extraction events during the 2-million year accumulation of the granitoid batholith. Marked variation in zircon composition from sample to sample, from grain to grain within individual samples, and from zone to zone within individual grains documents in detail a history of fluctuating conditions with repeated episodes of replenishment, reheating, crystal mush rejuvenation, fractional crystallization, and melt segregation. The zircons exhibit compositional and thermal variability indicative of variations in host melt composition due to (1) melt rejuvenation, mixing, and fractionation (2) coeval growth of other REE-rich accessory minerals, and possibly (3) fluctuation in fO2.  相似文献   
920.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号