首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2265篇
  免费   43篇
  国内免费   26篇
测绘学   48篇
大气科学   107篇
地球物理   576篇
地质学   770篇
海洋学   238篇
天文学   372篇
综合类   10篇
自然地理   213篇
  2021年   21篇
  2020年   31篇
  2019年   28篇
  2018年   42篇
  2017年   32篇
  2016年   63篇
  2015年   44篇
  2014年   55篇
  2013年   120篇
  2012年   64篇
  2011年   114篇
  2010年   78篇
  2009年   95篇
  2008年   82篇
  2007年   92篇
  2006年   85篇
  2005年   90篇
  2004年   76篇
  2003年   53篇
  2002年   74篇
  2001年   40篇
  2000年   38篇
  1999年   43篇
  1998年   28篇
  1997年   30篇
  1996年   32篇
  1995年   41篇
  1994年   33篇
  1993年   26篇
  1992年   25篇
  1991年   32篇
  1990年   23篇
  1989年   24篇
  1988年   34篇
  1987年   27篇
  1986年   24篇
  1985年   35篇
  1984年   38篇
  1983年   41篇
  1982年   32篇
  1981年   30篇
  1980年   27篇
  1979年   32篇
  1978年   24篇
  1977年   33篇
  1976年   31篇
  1975年   25篇
  1973年   19篇
  1972年   22篇
  1971年   18篇
排序方式: 共有2334条查询结果,搜索用时 15 毫秒
61.
Analysis of seismic signals from man-made impacts, moonquakes, and meteoroid impacts has established the presence of a lunar crust, approximately 60 km thick in the region of the Apollo seismic network; an underlying zone of nearly constant seismic velocity extending to a depth of about 1000 km, referred to as the mantle; and a lunar core, beginning at a depth of about 1000 km, in which shear waves are highly attenuated suggesting the presence of appreciable melting. Seismic velocitites in the crust reach 7 km s–1 beneath the lower-velocity surface zone. This velocity corresponds to that expected for the gabbroic anorthosites found to predominate in the highlands, suggesting that rock of this composition is the major constituent of the lunar crust. The upper mantle velocity of about 8 km s–1 for compressional waves corresponds to those of terrestrial olivines, pyroxenites and peridotites. The deep zone of melting may simply represent the depth at which solidus temperatures are exceeded in the lower mantle. If a silicate interior is assumed, as seems most plausible, minimum temperatures of between 1450°C and 1600°C at a depth of 1000 km are implied. The generation of deep moonquakes, which appear to be concentrated in a zone between 600 km and 1000 km deep, may now be explained as a consequence of the presence of fluids which facilitate dislocation. The preliminary estimate of meteoroid flux, based upon the statistics of seismic signals recorded from lunar impacts, is between one and three orders of magnitude lower than previous estimates from Earth-based measurements.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   
62.
Techniques from dynamical systems theory have been applied to the construction of transfers between unstable periodic orbits that have different energies. Invariant manifolds, trajectories that asymptotically depart or approach unstable periodic orbits, are used to connect the initial and final orbits. The transfer asymptotically departs the initial orbit on a trajectory contained within the initial orbit’s unstable manifold and later asymptotically approaches the final orbit on a trajectory contained within the stable manifold of the final orbit. The manifold trajectories are connected by the execution of impulsive maneuvers. Two-body parameters dictate the selection of the individual manifold trajectories used to construct efficient transfers. A bounding sphere centered on the secondary, with a radius less than the sphere of influence of the secondary, is used to study the manifold trajectories. A two-body parameter, κ, is computed within the bounding sphere, where the gravitational effects of the secondary dominate. The parameter κ is defined as the sum of two quantities: the difference in the normalized angular momentum vectors and eccentricity vectors between a point on the unstable manifold and a point on the stable manifold. It is numerically demonstrated that as the κ parameter decreases, the total cost to complete the transfer decreases. Preliminary results indicate that this method of constructing transfers produces a significant cost savings over methods that do not employ the use of invariant manifolds.  相似文献   
63.
Heights of formation of lines that do not exhibit Zeeman splitting are calculated using an LTE, partial non-LTE, and full non-LTE approach. Non-magnetic (g=0) lines are valuable for velocity investigations in quiet-Sun magnetic field regions, and a knowledge of their formation heights is useful for obtaining three dimensional velocity profiles in these regions. Presently at Sacramento Peak Observatory. Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   
64.
A sequence of extreme ultraviolet (EUV) spectroheliograms of McMath region No. 10283 were obtained by the Harvard College Observatory experiment on OSO-6. The lines Ovi λ1032 Mg × λ625, Si xii λ499 and Fe xvi λ 335 were used to determine coronal temperatures and densities above the active region. A comparison of theoretical and observed line ratios yielded coronal temperatures of 2.2 to 2.3 × 106K above the active region and 2.0 to 2.1 × 106K in the surrounding area. The temperatures derived from ratios involving the O vi intensities are systematically higher than the others. This is attributed to an error in the theoretical O vi intensities. The intensities observed above the limb are compared with intensities predicted with a simple model based on cylindrical geometry. The overall agreement shows that the assumption of an iso-thermal corona in hydrostatic equilibrium above the active region is a reasonable working hypothesis and that the adopted geometrical model for the electron density distribution is adequate.  相似文献   
65.
George Ohring 《Icarus》1975,24(3):388-394
The concept is described of deducing the temperature and constituent profile of a planetary atmosphere from orbiter measurements of the planet's ir limb radiance profile. Expressions are derived for the weighting functions associated with the limb radiance profile for a Goody random band model. Analysis of the weighting functions for the Martian atmosphere indicates that a limb radiance profile in the 15 μm CO2 band can be used to determine the Martian atmospheric temperature profile from 20 to 60 km. Simulation of the Martian limb radiance profile in the rotational water vapor band indicates that Martian water vapor mixing ratios can be inferred from limb radiance observations in a water vapor band.  相似文献   
66.
We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range     . The clustering of     galaxies in real space is well-fitted by a correlation length     and power-law slope     . The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M *, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between     and −22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L * galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.  相似文献   
67.
George E. McGill 《Icarus》1974,21(4):437-447
This paper is a test of published theoretical and experimental studies of crater erosion by micrometeorite bombardment which predict systematic variations in the morphology of lunar craters as a function of crater diameter and crater age. Numerical, ranking-type degradation classifications indicate that the craters on Mare Imbrium and Mare Tranquillitatus confirm these predictions by showing a systematic increase in degradation with decreasing diameter for craters smaller than a few kilometers in diameter but larger than the equilibrium diameter, and by showing fixed proportions of fresh, moderately degraded and very degraded craters under equilibrium conditions. Furthermore, the relative ages of the two mare surfaces may be determined using a diameter/mean-degradation-number curve. These determinations of relative age and process of crater erosion are both essentially independent of the traditionally studied crater diameter/frequency relationships. Morphologies of terra craters near Mare Humorum suggest a young, non-equilibrium crater population superposed on a perimordial population with about equilibrium proportions of fresh, moderately degraded and very degraded craters. The primordial population has been modified by pre-Imbrian or early Imbrian deposition of blanketing deposits. A comparative study of several crater degradation classifications indicates that all are essentially interchangeable.  相似文献   
68.
The formation of the gas giant planets Jupiter and Saturn probably required the growth of massive 15 Earth-mass cores on a time scale shorter than the 107 time scale for removal of nebular gas. Relatively minor variations in nebular parameters could preclude the growth of full-size gas giants even in systems in which the terrestrial planet region is similar to our own. Systems containing failed Jupiters, resembling Uranus and Neptune in their failure to capture much nebular gas, would be expected to contain more densely populated cometary source regions. They will also eject a smaller number of comets into interstellar space. If systems of this kind were the norm, observation of hyperbolic comets would be unexpected. Monte Carlo calculations of the orbital evolution of region of such systems (the Kuiper belt) indicate that throughout Earth history the cometary impact flux in their terrestrial planet regions would be 1000 times greater than in our Solar System. It may be speculated that this could frustrate the evolution of organisms that observe and seek to understand their planetary system. For this reason our observation of these planets in our Solar System may tell us nothing about the probability of similar gas giants occurring in other planetary systems. This situation can be corrected by observation of an unbiased sample of planetary systems.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   
69.
Magnetic field and plasma data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft on the outbound portions of the first (M1) and second (M2) flybys of Mercury reveal a region of depressed magnetic field magnitude and enhanced proton fluxes adjacent to but within the magnetopause, which we denote as a dayside boundary layer. The layer was present during both encounters despite the contrasting dayside magnetic reconnection, which was minimal during M1 and strong during M2. The overall width of the layer is estimated to be between 1000 and 1400 km, spanning most of the distance from the dayside planetary surface to the magnetopause in the mid-morning. During both flybys the magnetic pressure decrease was ∼1.6 nPa, and the width of the inner edge was comparable to proton gyro-kinetic scales. The maximum variance in the magnetic field across the inner edge was aligned with the magnetic field vector, and the magnetic field direction did not change markedly, indicating that the change in field intensity was consistent with an outward plasma-pressure gradient perpendicular to the magnetic field. Proton pressures in the layer inferred from reduced distribution observations were 0.4 nPa during M1 and 1.0 nPa during M2, indicating either that the proton pressure estimates are low or that heavy ions contribute substantially to the boundary-layer plasma pressure. If the layer is formed by protons drifting westward from the cusp, there should be a strong morning–afternoon asymmetry that is independent of the interplanetary magnetic field (IMF) direction. Conversely, if heavy ions play a major role, the layer should be strong in the morning (afternoon) for northward (southward) IMF. Future MESSENGER observations from orbit about Mercury should distinguish between these two possibilities.  相似文献   
70.
An extreme anomaly of laser-plasma interaction with petawatt-picosecond (PW-ps) pulses of very high contrast ratio for suppression of relativistic self-focusing permitted a come-back of the Bobin-Chu side-on ignition of uncompressed deuterium-tritium (DT) fusion fuel. The plasma blocks for the side-on ignition have to be produced by the well confirmed nonlinear force acceleration which is about 100,000 times higher than thermo-kinetic fluid-dynamic acceleration for comparison with astrophysical cases. It is essential that the dielectric plasma properties within the nonlinear force are used. Using the measured ion beam densities above 1011 A s/cm2 the ignition mechanism needed numerical and theoretical studies of extremely strong shock phenomena. When extending these results to the side-on ignition of uncompressed hydrogen-boron11 (HB11), surprisingly, the ignition by this shock mechanism was only about 10 times more difficult than for DT in contrast to ignition by spherical laser driven compression using thermo-kinetic conditions in which case HB11 ignition is 100,000 times more difficult than DT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号