首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   57篇
  国内免费   3篇
测绘学   11篇
大气科学   77篇
地球物理   272篇
地质学   348篇
海洋学   58篇
天文学   177篇
综合类   2篇
自然地理   32篇
  2023年   7篇
  2022年   7篇
  2021年   13篇
  2020年   14篇
  2019年   10篇
  2018年   37篇
  2017年   36篇
  2016年   59篇
  2015年   36篇
  2014年   59篇
  2013年   79篇
  2012年   53篇
  2011年   42篇
  2010年   42篇
  2009年   52篇
  2008年   34篇
  2007年   20篇
  2006年   19篇
  2005年   39篇
  2004年   33篇
  2003年   15篇
  2002年   12篇
  2001年   12篇
  2000年   6篇
  1999年   8篇
  1998年   9篇
  1997年   11篇
  1996年   12篇
  1995年   17篇
  1994年   12篇
  1993年   5篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1985年   8篇
  1984年   13篇
  1983年   14篇
  1982年   12篇
  1981年   15篇
  1980年   5篇
  1979年   9篇
  1978年   12篇
  1977年   7篇
  1975年   7篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1969年   7篇
  1966年   3篇
排序方式: 共有977条查询结果,搜索用时 15 毫秒
31.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
32.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   
33.
Four high-quality seismic refraction profiles were recorded parallel to the structural grain in the Cuvier Basin and adjacent Wharton Basin to study the nature of the earth's crust in this area. The principal result of this experiment is that this area is generally floored with oceanic crust. No transitional velocity structure exists at the base of the continental slope. Departures from a standard oceanic crustal section are observed on an intermediate profile that are attributed to structural complications on the flank of an abandoned spreading ridge. Additional magnetic anomaly profiles in the eastern Cuvier Basin are used to correlate the lineations in that area with Early Cretaceous reversals M-5 to M-10. This correlation dates the onset of plate separation at 120–125 m.y., essentially contemporaneous with the opening of the Perth Basin to the south. However, it leaves a 220-km gap between M-4 and M-5 in the Cuvier Basin that suggests a ridge jump of that magnitude occurred nominally at 118 m.y. Early Cretaceous magnetic lineations northwest of the Exmouth Plateau suggest that spreading at the seaward edge of the Exmouth Plateau began 120 m.y. ago, while Late Jurassic marine sediments and fault structures landward of the Exmouth Plateau suggest rifting in that area at 155 m.y.  相似文献   
34.
The effect of pyrolysis at increasing temperature on sporopollenin, lignite and sporopollenin oxidized at 200°C has been investigated using measured infrared band absorption coefficients.Oxidation of sporopollenin in air at 200°C is marked by a decrease in the content of saturated hydrocarbon chains and a strong increase in the concentration of carboxylic acid groups.Pyrolysis of a thick bed of sporopollenin at increasing temperatures leads to the removal of a large proportion of oxygenated functions, before the removal of hydrocarbons. For lignite and oxidized sporopollenin, the loss of both types of functional groups extends over a broader temperature range. Reorganization of the carbonaceous residue at high temperature is hindered if a sufficiently low content of oxygenated functions, carbonyl and carboxyl as well as hydroxyl and ether groups, is not reached before the elimination of hydrocarbons.  相似文献   
35.
Hydrogeology Journal - Monitoring of dissolved methane concentrations in groundwater is required to identify impacts from oil and gas development and to understand temporal variability under...  相似文献   
36.
The soil solution sampling by ceramic cups allows pesticide transfer monitoring in the soil during long times. The ageing of material involves a bias in the sampling results. In laboratory, the comparison of two types of ceramic suction cups, new and installed in situ during four years, shows a modification of the hydrodynamic properties and a possible evolution of the adsorption capacity of the matrix. The passage rate, as well qualitative as quantitative, is better for the old material. Recommendations about site management are finally exposed. To cite this article: N. Domange et al., C. R. Geoscience 336 (2004).  相似文献   
37.
CO2 inclusions with density up to 1,197 kg m−3 occur in quartz–stibnite veins hosted in the low-grade Palaeozoic basement of the Gemericum tectonic unit in the Western Carpathians. Raman microanalysis corroborated CO2 as dominant gas species accompanied by small amounts of nitrogen (<7.3 mol%) and methane (<2.5 mol%). The superdense CO2 phase exsolved from an aqueous bulk fluid at temperatures of 183–237°C and pressures between 1.6 and 3.5 kbar, possibly up to 4.5 kbar. Low thermal gradients (∼12–13°C km−1) and the CO2–CH4–N2 fluid composition rule out a genetic link with the subjacent Permian granites and indicate an external, either metamorphogenic (oxidation of siderite, dedolomitization) or lower crustal/mantle, source of the ore-forming fluids.According to microprobe U–Pb–Th dating of monazite, the stibnite-bearing veins formed during early Cretaceous thrusting of the Gemeric basement over the adjacent Veporic unit. The 15- to 18-km depth of burial estimated from the fluid inclusion trapping PT parameters indicates a 8- to 11-km-thick Upper Palaeozoic–Jurassic accretionary complex overlying the Gemeric basement and its Permo-Triassic autochthonous cover.  相似文献   
38.
We consider an immiscible incompressible two-phase flow in a porous medium composed of two different rocks so that the capillary pressure field is discontinuous at the interface between the rocks. This leads us to apply a concept of multivalued phase pressures and a notion of weak solution for the flow which have been introduced in Cancès and Pierre (SIAM J Math Anal 44(2):966–992, 2012). We discretize the problem by means of a numerical algorithm which reduces to a standard finite volume scheme in each rock and prove the convergence of the approximate solution to a weak solution of the two-phase flow problem. The numerical experiments show in particular that this scheme permits to reproduce the oil-trapping phenomenon.  相似文献   
39.
The Lherz orogenic lherzolite massif (Eastern French Pyrenees) displays one of the best exposures of subcontinental lithospheric mantle containing veins of amphibole pyroxenites and hornblendites. A reappraisal of the petrogenesis of these rocks has been attempted from a comprehensive study of their mutual structural relationships, their petrography and their mineral compositions. Amphibole pyroxenites comprise clinopyroxene, orthopyroxene and spinel as early cumulus phases, with garnet and late-magmatic K2O-poor pargasite replacing clinopyroxene, and subsolidus exsolution products (olivine, spinel II, garnet II, plagioclase). The original magmatic mineralogy and rock compositions were partly obscured by late-intrusive hornblendites and over a few centimetres by vein–wallrock exchange reactions which continued down to subsolidus temperatures for Mg–Fe. Thermobarometric data and liquidus parageneses indicate that amphibole pyroxenites started to crystallize at P ≥ 13 kbar and recrystallized at P < 12 kbar. The high AlVI/AlIV ratio (>1) of clinopyroxenes, the early precipitation of orthopyroxene and the late-magmatic amphibole are arguments for parental melts richer in silica but poorer in water than alkali basalts. Their modelled major element compositions are similar to transitional alkali basalt with about 1–3 wt% H2O. In contrast to amphibole pyroxenites, hornblendites only show kaersutite as liquidus phase, and phlogopite as intercumulus phase. They are interpreted as crystalline segregates from primary basanitic magmas (mg=0.6; 4–6 wt% H2O). These latter cannot be related to the parental liquids of amphibole pyroxenites by a fractional crystallization process. Rather, basanitic liquids mostly reused pre-existing pyroxenite vein conduits at a higher structural level (P ≤ 10 kbar). A continuous process of redox melting and/or alkali melt/peridotite interaction in a veined lithospheric mantle is proposed to account for the origin of the Lherz hydrous veins. The transitional basalt composition is interpreted in terms of extensive dissolution of olivine and orthopyroxene from wallrock peridotite by alkaline melts produced at the mechanical boundary layer/thermal boundary layer transition (about 45–50 km deep). Continuous fluid ingress allowed remelting of the deeper veined mantle to produce the basanitic, strongly volatiles enriched, melts that precipitated hornblendites. A similar model could be valid for the few orthopyroxene-rich hydrous pyroxenites described in basalt-hosted mantle xenoliths. Received: 15 September 1999 / Accepted: 31 January 2000  相似文献   
40.
This study concerns a core collected in Brejo do Espinho's lagoon from Cabo Frio littoral (Brazil) submitted to dry influence of local upwelling controlled by north-east trade winds from the South Atlantic and particularly strengthened during El Niño events. Diatoms study supported by sedimentological and isotopic analyses shows dry phases infrequent before 4000 yr, a highly variable climatic phase between 3600 and 2900 yr and from 2400 yr onward a dryness enhancement. To cite this article: B. Laslandes et al., C. R. Geoscience 338 (2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号