首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   3篇
地球物理   50篇
地质学   3篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   11篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2002年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
41.
The 22 February 2011 Mw 6.3 earthquake produced a number of unique accelerograms in the city of Christchurch and the port of Lyttelton. Four of these records are analyzed in this paper. The two are from the Christchurch Catholic Cathedral College and Christchurch Hospital stations in the center of the city, which were placed on top of loose sandy soils that suffered softening due to liquefaction; one is from the Lyttelton station, Lyttelton Port Company, on a rock outcrop; and one is from the station at the Heathcote Valley Primary School, on stiff colluvial silts and sands near the edge of a steep and stiff sedimentary basin. The (elastic) response spectra are discussed and related to some salient characteristics of the motions. Symmetric and asymmetric sliding of a block resting through Coulomb friction on horizontal or inclined planes and rocking–overturning of rigid blocks, when excited at their base by these records, offer a strong indication of their ‘destructiveness potential’. The corresponding sliding and overturning spectra of the 2011 records are compared with those of some historic accelerograms to get an understanding of the severity of ground shaking that caused 170 deaths and heavy geotechnical and structural damage in the city of Christchurch. The possible role played by the unusually large vertical accelerations is also explored. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
42.
Precast concrete structures are preferred for facilities with large open areas due to easiness in construction. Such structures are typically composed of individual columns and long‐span beams, and are quite flexible and of limited redundancy. In this paper, nonlinear dynamic analyses of a typical such structure are conducted using as excitation 54 ground motions recorded on top of a variety of soils (hard, soft, and liquefied soil sites). The results show that liquefaction‐affected level‐ground motions systematically impose a greater threat to precast‐concrete structures in terms of seismic demand, even when low values of elastic spectral acceleration prevail, as opposed to soft‐soil records and even more to hard‐soil ones. Thus, elastic spectral acceleration appears to be an insufficient engineering demand parameter for design. Soil effects, the “signature” of which is born on ground motions, are first uncovered using wavelet analysis to detect the evolution of the energy and frequency content of the ground motion in the time domain. From this, the changes in effective (“dominant”) excitation period are noted, persuasively attributed to the nature of the soil, and finally correlated with the observed structural behavior. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
43.
In a previous publication1 dealing with the lateral seismic response of dams and embankments the authors developed an inhomogeneous shear beam (SB) model in which the modulus increases as a power m of the depth, with m ranging from 0.35 to 0.90 and depending on material and geometric parameters. Reference 1 studied primarily the free vibration characteristics and the distribution of peak seismic displacements in earth dams. This paper focuses on seismic shear strains and stresses, and on seismic coefficients. Both steady-state and transient vibrations are considered and the effects of inhomogeneity are graphically illustrated. A comprehensive comparative study is undertaken using five dam cross-sections, each excited by four recorded accelerograms. It is found that plane-strain finite-element analyses yield distributions of peak values of seismic shear strains which, in general, are in good accord with the results of a ‘consistent’ inhomogeneous SB model. The limitations of the developed model are also elucidated and possible ways of overcoming them are suggested.  相似文献   
44.
This paper presents a coupled lumped mass model (CLM model) for the vertical dynamic coupling of railway track through the soil. The well-known Winkler model and its extensions are analysed and fitted on the result obtained numerically with a finite–infinite element model in order to validate the approach in a preliminary step. A mass–spring–damper system with frequency independent parameters is then proposed for the interaction between the foundations, representing the contact area of the track with the soil. The frequency range of track–soil coupling is typically under 100 Hz. Analytical expressions are derived for calibrating the system model with homogeneous and layered half-spaces. Numerical examples are derived, with emphasis on soil stiffness and layering. The dynamic analysis of a track on various foundation models is compared with a complete track–soil model, showing that the proposed CLM model captures the dynamic interaction of the track with the soil and is reliable to predict the vertical track deflection and the reaction forces acting on the soil surface.  相似文献   
45.
Using finite-element modelling, this paper explores the magnitude and distribution of dynamic earth pressures on several types of flexible retaining systems: L-shaped reinforced-concrete walls, piled walls with horizontal or with strongly inclined anchors, and reinforced-soil walls. The utilized base excitation is typical of earthquake motions of either high or moderately low dominant frequencies having a peak ground acceleration (PGA) of 0.40 g and relatively short duration. Linear as well as non-linear (Mohr–Coulomb) soil behaviour is investigated, under dry conditions. The results show that, as the degree of realism in the analysis increases, we can explain the frequently observed satisfactory performance of such retaining systems during strong seismic shaking.  相似文献   
46.
A general methodology is outlined for a complete seismic soil—pile-foundation—structure interaction analysis. A Beam-on-Dynamic-Winkler-Foundation (BDWF) simplified model and a Green's-function-based rigorous method are utilized in determining the dynamic response of single piles and pile groups. The simplified model is validated through comparisons with the rigorous method. A comprehensive parameter study is then performed on the effect of pile group configuration on the dynamic impedances of pile foundations. Insight is gained into the nature of dynamic pile—soil—pile interaction. The results presented herein may be used in practice as a guide in obtaining the dynamic stiffness and damping of foundations with a large number of piles.  相似文献   
47.
The article outlines the main findings and conclusions of the QUAKER research project and other related studies on the behaviour of foundations built on top of a rupturing dip-slip fault. Although emphasis is placed on normal faults, the derived conclusions are valid for reverse faults, as well. A key conclusion is that it is quite feasible to design a foundation to withstand an underneath rupturing fault. Practical design recommendations suitable for developing future Code requirements on the subject, are developed on the basis of the presented conclusions.  相似文献   
48.
Field evidence from recent earthquakes has shown that structures can be designed to survive major surface dislocations. This paper: (i) Describes three different finite element (FE) methods of analysis, that were developed to simulate dip slip fault rupture propagation through soil and its interaction with foundation–structure systems; (ii) Validates the developed FE methodologies against centrifuge model tests that were conducted at the University of Dundee, Scotland; and (iii) Utilises one of these analysis methods to conduct a short parametric study on the interaction of idealised 2- and 5-story residential structures lying on slab foundations subjected to normal fault rupture. The comparison between numerical and centrifuge model test results shows that reliable predictions can be achieved with reasonably sophisticated constitutive soil models that take account of soil softening after failure. A prerequisite is an adequately refined FE mesh, combined with interface elements with tension cut-off between the soil and the structure. The results of the parametric study reveal that the increase of the surcharge load q of the structure leads to larger fault rupture diversion and “smoothing” of the settlement profile, allowing reduction of its stressing. Soil compliance is shown to be beneficial to the stressing of a structure. For a given soil depth H and imposed dislocation h, the rotation Δθ of the structure is shown to be a function of: (a) its location relative to the fault rupture; (b) the surcharge load q; and (c) soil compliance.  相似文献   
49.
Over the past few decades, earthquake engineering research mainly focused on the effects of strong seismic shaking. After the 1999 earthquakes in Turkey and Taiwan, and thanks to numerous cases where fault rupture caused substantial damage to structures, the importance of faulting-induced deformation has re-emerged. This paper, along with its companion (Part Ⅱ), exploits parametric results of finite element analyses and centrifuge model testing in developing a four-step semi-analytical approach for analysis of dip-slip (normal and thrust) fault rupture propagation through sand, its emergence on the ground surface, and its interaction with raft foundations. The present paper (Part Ⅰ) focuses on the effects of faulting in the absence of a structure (i.e., in the free-field). The semi-analytical approach comprises two-steps: the first deals with the rupture path and the estimation of the location of fault outcropping, and the second with the tectonically- induced displacement profile at the ground surface. In both cases, simple mechanical analogues are used to derive simplified semi-analytical expressions. Centrifuge model test data, in combination with parametric results from nonlinear finite element analyses, are utilized for model calibration. The derived semi-analytical expressions are shown to compare reasonably well with more rigorous experimental and theoretical data, thus providing a useful tool for a first estimation of near-fault seismic hazard.  相似文献   
50.
Numerical modeling of centrifuge cyclic lateral pile load experiments   总被引:3,自引:1,他引:2  
To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussées. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on re...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号