首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   17篇
  国内免费   4篇
测绘学   26篇
大气科学   29篇
地球物理   161篇
地质学   277篇
海洋学   87篇
天文学   233篇
综合类   2篇
自然地理   116篇
  2021年   5篇
  2020年   10篇
  2019年   6篇
  2018年   8篇
  2017年   12篇
  2016年   15篇
  2015年   21篇
  2014年   16篇
  2013年   38篇
  2012年   26篇
  2011年   41篇
  2010年   30篇
  2009年   27篇
  2008年   40篇
  2007年   28篇
  2006年   35篇
  2005年   36篇
  2004年   48篇
  2003年   28篇
  2002年   32篇
  2001年   23篇
  2000年   23篇
  1999年   18篇
  1998年   27篇
  1997年   23篇
  1996年   11篇
  1995年   16篇
  1994年   13篇
  1993年   8篇
  1992年   13篇
  1991年   11篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   15篇
  1984年   13篇
  1983年   17篇
  1982年   10篇
  1981年   18篇
  1980年   12篇
  1979年   10篇
  1978年   13篇
  1977年   9篇
  1975年   12篇
  1974年   10篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
排序方式: 共有931条查询结果,搜索用时 265 毫秒
131.
132.
133.
Many fishes routinely exploit resources in high-energy marine habitats of interest to ocean engineers, including rocky coasts and coral reefs. How fishes modulate fin motions to correct perturbations to the preferred heading or to maneuver in complex structure should interest both biologists and ocean engineers. These fin motions are reviewed in order to generate simple models of causal relationships between fin design, motion, and maneuvering performance. The available data on maneuvering performance in fishes is reviewed to compare to the simple models, to identify gaps in our knowledge, and to outline a research program to address these gaps more effectively.  相似文献   
134.
135.
Fin-based propulsion systems perform well for both high-speed cruising and high maneuverability in fishes, making them good models for propulsors of autonomous underwater vehicles. Labriform locomotion in fishes is actuated by oscillation of the paired pectoral fins. Here, we present recent research on fin structure, fin motion, and neural control in fishes to outline important future directions for this field and to assist engineers in attempting biomimicry of maneuverable fin-based locomotion in shallow surge zones. Three areas of structure and function are discussed in this review: 1) the anatomical structure of the fin blade, skeleton, and muscles that drive fin motion; 2) the rowing and flapping motions that fins undergo for propulsion in fishes; and 3) the neuroanatomy, neural circuitry, and electrical muscle activity that are characteristic of pectoral fins. Research on fin biomechanics, muscle physiology and neural control is important to the comparative biology of locomotion in fishes and application of fin function for aid in aquatic vehicle design. Recommendations are made regarding fin propulsor designs based on the fin shape, activation pattern, and motion. Research on neural control of fins is a key piece in the puzzle for a complete understanding of comparative fin function and may provide important principles for engineers designing control systems for fin-like propulsors.  相似文献   
136.
137.
138.
UW CrB (MS 1603+2600) is a peculiar short-period X-ray binary that exhibits extraordinary optical behaviour. The shape of the optical light curve of the system changes drastically from night to night, without any changes in overall brightness. Here we report X-ray observations of UW CrB obtained with XMM–Newton . We find evidence for several X-ray bursts, confirming a neutron star primary. This considerably strengthens the case that UW CrB is an accretion disc corona system located at a distance of at least 5–7 kpc (3–5 kpc above the Galactic plane). The X-ray and Optical Monitor (ultraviolet–optical) light curves show remarkable shape variation from one observing run to another, which we suggest are due to large-scale variations in the accretion disc shape resulting from a warp that periodically obscures the optical and soft X-ray emission. This is also supported by the changes in phase-resolved X-ray spectra.  相似文献   
139.
The Hill-type stability (cf. closure of the zero-velocity curves in the circular restricted three-body problem) of general hierarchical three-body systems is examined analytically in the case where the total mass of the binary is small in comparison to the mass of the external body (e.g. systems of the type Planet-Satellite-Sun, Planet-Planet-Star, etc.). This is compared with results derived by Szebehely, Markellos and Roy in the Planet-Satellite-Sun case of the circular restricted three-body problem. It is demonstrated how the Hill-type stability is affected by the sense of revolution of the binary, i.e. corotational or contrarotational, and the mass ratio within the binary. The effect of the difference in longitudes of the bodies in their orbits is also examined.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号