首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   37篇
  国内免费   5篇
测绘学   16篇
大气科学   68篇
地球物理   257篇
地质学   260篇
海洋学   86篇
天文学   189篇
综合类   12篇
自然地理   116篇
  2021年   11篇
  2020年   10篇
  2019年   8篇
  2018年   15篇
  2017年   18篇
  2016年   13篇
  2015年   14篇
  2014年   25篇
  2013年   65篇
  2012年   28篇
  2011年   35篇
  2010年   40篇
  2009年   39篇
  2008年   42篇
  2007年   39篇
  2006年   38篇
  2005年   49篇
  2004年   39篇
  2003年   26篇
  2002年   25篇
  2001年   20篇
  2000年   28篇
  1999年   24篇
  1998年   25篇
  1997年   22篇
  1996年   13篇
  1995年   19篇
  1994年   20篇
  1993年   15篇
  1992年   14篇
  1991年   12篇
  1990年   15篇
  1989年   11篇
  1988年   8篇
  1987年   15篇
  1986年   9篇
  1985年   16篇
  1984年   15篇
  1983年   13篇
  1982年   15篇
  1981年   16篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   9篇
  1974年   6篇
  1973年   8篇
  1972年   6篇
排序方式: 共有1004条查询结果,搜索用时 0 毫秒
971.
Mean annual estimates of the oceanic poleward energy transport are obtained using a global atmospheric general circulation model. The computations are carried out by using the atmospheric model to determine the net annual heat flux into the ocean on an 8° × 10° grid. Assuming no net annual heat storage, the annual surface heat fluxes into any zonal band must be accompanied by a corresponding meridional heat transport in the ocean. Heat is transported northward at all latitudes in the Atlantic Ocean and is transported poleward in both hemispheres in the Pacific Ocean. To account for the net northward transport throughout the Atlantic, heat is transported into the Atlantic from the Indian and Pacific basins. The results are compared with several recent direct and indirect calculations of oceanic meridional heat transports.  相似文献   
972.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   
973.
Edward Jarvis in 1850 first demonstrated that admission rates to mental hospitals decrease with increasing residential distance, a relationship known today as “Jarvis's Law.” His original data are presented, mapped, and examined by regression analysis to better understand spatial and temporal patterns of mid-19th century mental hospital utilization. Distance substantially affected admission rates to a radius of about 60 miles from the institution in Massachusetts; and there was strong distance decay in the other states examined. For all twelve states, there was a positive association between age of the hospitals and admission rates, which also decreased with increasing residential distance.  相似文献   
974.
Depth imaging in anisotropic media by symmetric non-stationary phase shift   总被引:1,自引:1,他引:1  
We present a new depth‐imaging method for seismic data in heterogeneous anisotropic media. This recursive explicit method uses a non‐stationary extrapolation operator to allow lateral velocity variation, and it uses the relationship between phase angle and the spectral coordinates of seismic data to allow velocity variation with phase angle. A qualitative comparison of migration impulse responses suggests that, for an equivalent cost, the symmetric non‐stationary phase‐shift (SNPS) operator is superior to the phase‐shift plus interpolation (PSPI) operator, for very large depth intervals. To demonstrate the potential of the new method, seismic data from a physical model acquired over a transversely isotropic medium are imaged using a shot‐record migration based on the SNPS operator.  相似文献   
975.
976.
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of ? 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.  相似文献   
977.
As part of the 1984–1985 NOAA VENTS program on the Mid-Atlantic Ridge, nephelometry was used to provide real-time detection and tracking of dispersed hydrothermal plumes. At all nine 1984 study sites, hydrothermal activity was detected by in-situ, real-time nephelometer measurements and later confirmed by dissolved Mn and particulate Fe measurements. These same techniques were employed in a site-specific survey of the Trans-Atlantic Geotraverse (TAG) area in 1985 where large water-column anomalies in turbidity and in dissolved Mn helped lead to the discovery of high-temperature black smokers.The optical response of the nephelometer was to hydrothermally-derived particulate matter. Thus strong correlations existed between the nephelometer readings and total suspended matter (r = 0.98, n = 34), and particulate Fe (r = 0.88, n = 32). In addition, digital nephelometer data correlated well with dissolved Mn (r = 0.88; n = 78) throughout a large concentration range (0.2–31.0 nmol/kg).These data provide good evidence for the utility of in-situ nephelometer measurements for locating and surveying plumes from hydrothermal vents. It also appears possible, within limits, to predict concentrations of in-situ total suspended matter, of particulate Fe and of dissolved Mn.  相似文献   
978.
979.
Historic‐ and prehistoric‐tsunami sand deposits are used to independently establish runup records for tsunami hazard mitigation and modeled runup verification in Crescent City, California, located in the southern Cascadia Subduction Zone. Inundation from historic (1964) farfield tsunami (~5–6 m runup height) left sand sheet deposits (100–200 m width) in wetlands located behind a low beach ridge [3–4 m elevation of the National Geodetic Vertical Datum of 1988 (NAVD88)]. The most landward flooding lines (4·5–5 m elevation) in high‐gradient alluvial wetlands exceed the 1964 sand sheet records of inundation by 1–2 m in elevation. The most landward flooding in low‐gradient alluvial wetlands exceed the corresponding sand sheet record of inundation distance by 1000 m. Nevertheless, the sand sheet record is an important proxy for high‐velocity inundation. Sand sheet deposition from the 1964 historic tsunami closely corresponds to the landward extent of large debris transport and structural damage in the Crescent City waterfront. The sand sheet deposits provide a proxy for maximum hazard or ‘kill zone’ in the study area. Six paleotsunami sand sheets (0·3–3 ka) are recorded in the back‐ridge marshes in Crescent City, yielding a ~450 year mean recurrence interval for nearfield Cascadia tsunami. Two paleotsunami sand deposit records, likely correlated to Cascadia ruptures between 1·0 and 1·5 ka, are traced to 1·2 km distance and 9–10 m elevation, as adjusted for paleo‐sea level. The paleotsunami sand deposits demonstrate at least twice the runup height, and four times the inundation distance of the farfield 1964 tsunami sand sheet in the same marsh system. The preserved paleotsunami deposits in Crescent City are compared to the most landward flooding, as modeled by other investigators from a predicted Cascadia (~ Mw 9) rupture. The short geologic record (~1·5 ka) yields slightly lower runup records than those predicted for the modeled Mw 9 rupture scenario in the same marsh, but it generally verifies predicted maximum tsunami runup for use in the planning of emergency response and rapid evacuation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
980.
Floodplains and terraces in river valleys play important roles in the transport dynamics of water and sediment. While flat areas in river valleys can be identified from LiDAR data, directly characterizing them as either floodplain or terraces is not yet possible. To address this challenge, we hypothesize that, since geomorphic features are strongly coupled to hydrological and hydraulic dynamics and their associated variability, there exists a return frequency, or possibly a narrow band of return frequencies, of flow that is associated with floodplain formation; and this association can provide a distinctive signature for distinguishing them from terraces. Based on this hypothesis we develop a novel approach for distinguishing between floodplains and terraces that involves transforming the transverse cross‐sectional geometry of a river valley into a curve, named a river valley hypsometric (RVH) curve, and linking hydraulic inundation frequency with the features of this curve. Our approach establishes that the demarcation between floodplains and terraces can be established from the structure of steps and risers in the RVH curves which can be obtained from the DEM data. Further, it shows that these transitions may themselves be shaped by floods with 10‐ to 100‐year recurrence. We additionally show that, when floodplain width and height (above channel bottom) are normalized by bankfull width and depth, the ratio lies in a narrow range independent of the scale of the river valley. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号