首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   37篇
  国内免费   5篇
测绘学   16篇
大气科学   68篇
地球物理   257篇
地质学   260篇
海洋学   86篇
天文学   189篇
综合类   12篇
自然地理   116篇
  2021年   11篇
  2020年   10篇
  2019年   8篇
  2018年   15篇
  2017年   18篇
  2016年   13篇
  2015年   14篇
  2014年   25篇
  2013年   65篇
  2012年   28篇
  2011年   35篇
  2010年   40篇
  2009年   39篇
  2008年   42篇
  2007年   39篇
  2006年   38篇
  2005年   49篇
  2004年   39篇
  2003年   26篇
  2002年   25篇
  2001年   20篇
  2000年   28篇
  1999年   24篇
  1998年   25篇
  1997年   22篇
  1996年   13篇
  1995年   19篇
  1994年   20篇
  1993年   15篇
  1992年   14篇
  1991年   12篇
  1990年   15篇
  1989年   11篇
  1988年   8篇
  1987年   15篇
  1986年   9篇
  1985年   16篇
  1984年   15篇
  1983年   13篇
  1982年   15篇
  1981年   16篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   9篇
  1974年   6篇
  1973年   8篇
  1972年   6篇
排序方式: 共有1004条查询结果,搜索用时 0 毫秒
141.
Attention is focused here on the effect of additional sources of uncertainty derived from climate change on the cost-benefit procedures applied by coastal planners to evaluate shoreline protection projects. The largest effect would be felt if planners were trying to achieve the first best economic optimum. Given the current view that the seas will rise by significantly less than one meter through the year 2100, present procedures should work reasonably well assuming (1) informed vigilance in monitoring the pace of future greenhouse induced sea level rise, (2) careful attention to the time required for market-based adaptation to minimize the economic cost of abandonment, and (3) firm support of the credibility of an announced policy to proceed with plans to retreat from the sea when warranted. Assumptions (1) and (2) might be satisfied in reality, even cursory review of existing policy makes it clear that meeting (3) is a "long shot" at the very best. In any case, planners should periodically revisit potential protection sites, especially in the wake of catastrophic events, to assess the impact of the most recent information on sea level rise trajectories, local development patterns, and protection costs on the decision calculus.  相似文献   
142.
Utilizing chemical data derived from the various fault zone architectural components of the Clark strand of the San Jacinto fault, southern California, USA, we apply for the first time non-central principal component analysis to calculate a compositional linear trend within molar A–CN–K space. In this procedure A–CN–K are calculated as the molar proportions of Al2O3 (A), CaO* + Na2O (CN), and K2O (K) in the sum of molar Al2O3, Na2O, CaO*, and K2O. CaO* is the molar CaO after correction for apatite. We then derive translational invariant chemical alteration intensity factors, t, for each architectural component through orthogonal projection of analyzed samples onto the compositional linear trend. The chemical alteration intensity factor t determines the relative change in composition compared to the original state (i.e., the composition of the altered wall rocks). It is dependent on the degree of intensity to which the process or processes responsible for the change in composition of each architectural component has been active. These processes include shearing, fragmentation, fluid flow, and generation of frictional heat. Non-central principal component analysis indicates that principal component 1 explains 99.7 % of the spread of A–CN–K data about the calculated compositional linear trend (i.e., the variance). The significance level for the overall one-way analysis of variance (ANOVA) is 0.0001. Such a result indicates that at least one significant difference across the group of means of t values is different at the 95 % confidence level. Following completion of the overall one-way ANOVA, the difference in means t test indicated that the mean of the t values for the fault core are different than the means obtained from the transition and damage zones. In contrast, at the 95 % confidence level, the means of the t values for the transition and damage zones are not statistically distinguishable. The results of XRD work completed during this study revealed that the <2 µm fraction is composed primarily of illite/smectite with ~15 % illite in the damage zone, of illite/smectite with ~30 % illite in the transition zone, and of discreet illite with very minor smectite in the fault core. These changes parallel the increasing values of the chemical alteration intensity factors (i.e., t). Based on the above results, it is speculated that when fault zones are derived from tonalitic wall rocks at depths of ~400 ± 100 m, the onset of the illite/smectite to illite conversion will occur when t values exceed 0.20 ± 0.12, the average chemical alteration intensity factor calculated for the transition zone. Under such conditions during repeated rupturing events, frictional heat is produced and acidic fluids with elevated temperatures (≥ ~125 °C) are flushed through the fault core. Over time, the combination of shearing, fragmentation, and frictionally elevated temperatures eventually overcomes the kinetic barrier for the illite/smectite to illite transition. Such settings and processes are unique to fault zones, and as a result, they represent an underappreciated setting for the development of illite from illite/smectite. The success of non-central principal component analysis in this environment offers the first statistically rigorous methodology for establishing the existence of compositional linear trends in fault zones. This method also derives quantifiable alteration intensity factors that could potentially be used to compare the intensity of alteration at different segments of a fault, as well as offer a foundation to interpret the potential driving forces for said alteration and differences therein.  相似文献   
143.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   
144.
145.
The biology, ecology, biogeography, phylogeny, and evolution of sand-dwelling scorpions are reviewed. We present general features of sand that form the ecological theatre on which psammophiles have evolved. Sand scorpions, compared to those that live off sand, are not very diverse in any one local habitat, although they are often relatively abundant. Worldwide, they are represented by 29 genera, 11 of which exist exclusively in sand. Endemic genera belong to non-related families, suggesting that psammophilic adaptations evolvedin situin different sand deserts of the world.  相似文献   
146.
147.
148.
149.
Experiments (P=6.9 kb; T=900–1000°C) on four crustal xenoliths from Kilbourne Hole demonstrate the varying melting behavior of relatively dry crustal lithologies in the region. Granodioritic gneisses (samples KH-8 and KH-11) yield little melt (<5–25%) by 925°C, but undergo extensive (30–50%) melting between 950 and 1000°C. A dioritic charnockite (KH-9) begins to melt, with the consumption of all modal K-feldspar, by 900°C. It is as fertile a melt source as the granodiorites at lower temperatures, but is outstripped in melt production by the granodiorite gneisses at high temperature, yielding only 26% melt by 1000°C. A pelitic granulite (KH-12) proved to be refractory (confirming earlier predictions based on geochemistry) and did not yield significant melt even at 1000°C. All melts have the composition of metaluminous to slightly peraluminous granites and are unlikely to be individually recognizable as magma contaminants on the basis of major element chemistry. However, the relative stability of K-feldspar during partial melting will produce recognizable signatures in Ba, Eu, K/Ba, and Ba/Rb. Melts of KH-11, which retains substantial K-feldspar throughout the melting interval, are generally low in Ba (<500–800 ppm), have high K/Ba and low Ba/Rb (est.) (62–124 and 1–3, respectively). Melts of KH-9, in which all K-feldspar disappears with the onset of melting, are Ba-rich [2000–2600 ppm, K/Ba=16–22; Ba/Rb (est.) =25–47]. Melts of KH-8 have variable Ba contents; <500 ppm Ba at low temperature but >900 ppm Ba in high-temperature melts coexisting with a K-feldspar-free restite. Although REE were not measured in either feldspar or melt, the high Kspar/melt Kds for Eu suggests that the melts coexisting with K-feldspar will have strong negative Eu anomalies. Isotopic and trace element models for magma contamination need to take into account the melting behavior of isotopic reservoirs. For example, the most radiogenic (and incompatible element-rich) sample examined here (the pelitic granulite,87Sr/86Sr=0.757) is refractory, while samples with far less radiogenic Sr (87Sr/86Sr=0.708-0.732) produced substantial melt. This suggests that, in this area, the isotopic signature of contamination may be more subtle than expected. The experimental results can be used to model the petrogenesis of Oligocene volcanic rocks exposed 150 km to the NW of Kilbourne Hole, in the Black Range in the Mogollon-Datil volcanic field. The experimental results suggest that a crustal melting origin for the Kneeling Nun and Caballo Blanco Tuffs is unlikely, even though such an interpretation is permitted by Sr isotopes. Curstal contamination of a mantle-derived magma best explains the chemical and isotopic characteristics of these tuffs. Both experimental and geochemical data suggest that the rhyolites of Moccasin John Canyon and Diamond Creek could represent direct melts of granodiorite basement similar, but not identical, to the Kilbourne Hole granodiorites, perhaps slightly modified by crystal fractionation. The absence of volcanic rocks having87Sr/86Sr>0.74 in the region is consistent with the refractory character of the pelitic granulite.  相似文献   
150.
The concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace elements were determined for surface (top 2 cm) sediment samples collected during the deep Gulf of Mexico benthos (DGoMB) study .These elements and compounds are known to be toxic to organisms at high concentrations and may affect biological communities. There is no indication of major anthropogenic input of the elements Be, Co, Cr, Fe, Si, Tl, V, K, Mg, Ca, Sr and Zn, based on normalization to Al. The concentrations of these metals in the sediment are a function of the relative amounts of trace-metal-rich Mississippi River-derived silicate material and trace-metal-poor plankton-derived carbonate. This is not true for the elements Ba, Ni, Pb, Cd, As, Cu and Mn, whose concentrations show considerable scatter when normalized to Al and a general enrichment. On a normalized basis, Mn is enriched 5–10 fold, Cu and Ni 2–3 fold and Pb 2 fold over Mississippi River-derived material. These enrichments are likely the result of remobilization of metals from depths in the sediment column where reducing conditions exist. The Ba concentrations at selected sites are higher than those of average clay-rich sediments, but are typical of sediments from near oil well platforms in the northern Gulf of Mexico. In the case of Ba, it seems likely that the enrichments, as high as a factor of 10, are due to disposal of oil well drilling mud. The Ba-enriched samples are from the three shallowest water sites in the Mississippi Trough (sites MT1, 2 and 3) and from site C1 and WC5. All are in an area of intense petroleum exploration and development. PAH concentrations are also elevated at MT1, MT3 and C1. The total PAH concentration ranged from not detected (ND) to 1033 ng/g with a mean of 140 ng/g. Even at the sites most enriched in PAHs and trace elements, the concentrations are not at the levels expected to adversely affect the biota. However, these predicted non-effects are based on research using mostly near-shore estuarine species, not on the indigenous species at the sampling sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号