首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   1篇
地球物理   2篇
地质学   12篇
海洋学   1篇
自然地理   3篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1981年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
The Burtonsville landslide in central New York, USA, is a kilometer-scale rotational block failure in glacial till that was likely initiated by incision of the adjacent Schoharie Creek. Although the timing of initial failure is unknown, relatively fresh scarps and tilted surfaces suggest that movement is post-glacial and active. The river currently erodes the toe slope and it removed significant material during flooding associated with Hurricane Irene (August 2011). We retrieved tree cores from 111 trees across the landslide to reconstruct modern movement and block tilting as it related to moisture conditions in the region. Our data show that trees across the slide are in sync with respect to the stress response indicated by reaction wood. The magnitude of response to slope instability, as inferred from eccentric growth, has varied considerably across the site. We hypothesize that macropore development during the driest periods, and the differential rate at which water has reached subsurface failure planes, has caused the observed slope instability. The combination of a wetter precipitation regime and slope instability leads to higher sediment loads in the adjacent stream and serves as a useful analogy for similar watersheds in the region.  相似文献   
12.
裂变径迹年代学测试表明,吉隆地区高喜马拉雅约30km的南北剖面上锆石裂变径迹年龄介于13~2.4Ma之间,磷灰石裂变径迹年龄介于1.9~0.6Ma之间;在空间上,裂变径迹年龄与高程及纬度都具有正相关关系。综合区域热年代学资料,裂变径迹年代学数据揭示出研究区高喜马拉雅经历了3个阶段的冷却剥露过程:①中新世中期至约13Ma,藏南拆离系(STDS)大规模伸展拆离作用引发的高喜马拉雅岩石区域性的构造剥露;②中新世晚期伴随STDS韧性变形的结束,缓慢冷却剥露阶段;③上新世前后,5.8~2.7Ma以来,快速并不断加速的冷却剥露作用。综合对比研究区构造地貌特征及热年代学空间格局,提出上新世以来高喜马拉雅快速并加速的剥露作用,是由流域以河流切蚀为代表的地表作用过程驱动。  相似文献   
13.
A multidisciplinary approach, combining sediment petrographic, palynological and thermochronological techniques, has been used to study the Miocene‐Pliocene sedimentary record of the evolution of the Venezuelan Andes. Samples from the Maracaibo (pro‐wedge) and Barinas (retro‐wedge) foreland basins, proximal to this doubly vergent mountain belt, indicate that fluvial and alluvial‐fan sediments of similar composition were shed to both sides of the Venezuelan Andes. Granitic and gneissic detritus was derived from the core of the mountain belt, whereas sedimentary cover rocks and uplifted foreland basin sediments were recycled from its flanks. Palynological evidence from the Maracaibo and Barinas basins constrains depositional ages of the studied sections from late Miocene to Pliocene. The pollen assemblages from the Maracaibo Basin are indicative of mountain vegetation, implying surface elevations of up to 3500–4000 m in the Venezuelan Andes at this time. Detrital apatite fission‐track (AFT) data were obtained from both stratigraphic sections. In samples from the Maracaibo basin, the youngest AFT grain‐age population has relatively static minimum ages of 5 ± 2 Ma, whereas for the Barinas basin samples AFT minimum ages are 7 ± 2 Ma. With exception of two samples collected from the Eocene Pagüey Formation and from the very base of the Miocene Parángula Formation, no evidence for resetting and track annealing in apatite due to burial heating in the basins was found. This is supported by rock‐eval analyses on organic matter and thermal modelling results. Therefore, for all other samples the detrital AFT ages reflect source area cooling and impose minimum age constraints on sediment deposition. The main phase of surface uplift, topography and relief generation, and erosional exhumation in the Venezuelan Andes occurred during the late Miocene to Pliocene. The Neogene evolution of the Venezuelan Andes bears certain similarities with the evolution of the Eastern Cordillera in Colombia, although they are not driven by exactly the same underlying geodynamic processes. The progressive development of the two mountain belts is seen in the context of collision of the Panama arc with northwestern South America and the closure of the Panama seaway in Miocene times, as well as contemporaneous movement of the Caribbean plate to the east and clock‐wise rotation of the Maracaibo block.  相似文献   
14.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   
15.
Abstract The Lesnaya Group is part of a thick, poorly dated turbidite assemblage that sits in the footwall of a regionally extensive collision zone in which the Cretaceous–Paleocene Olutorsky island arc terrane was obducted onto continental margin basin strata. Nannoplankton from 18 samples from the upper part of the Lesnaya Group yield Paleocene through Middle Eocene assemblages. Detrital zircons from nine sandstone samples have a young population of fission-track ages that range from 43.7 ± 3.4 to 55.5 ± 3.5 Ma (uppermost Paleocene to Middle Eocene). The deformed footwall rocks of the Lesnaya Group and the overlying thrusts of the Olutorsky arc terrane, are unconformably overlain by neoautochthonous deposits which are Lutetian (lower Middle Eocene) and younger. Together, these new data indicate that thrusting, which is inferred to have been driven by collision of the Cretaceous–Paleocene island arc with north-eastern Asia, took place in the mid-Lutetian, at about 45 Ma.  相似文献   
16.
17.
根据对东昆仑地区东段哈拉郭勒—哈图一带不同高度基岩的系列锆石裂变径迹年龄分析,结合磷灰石裂变径迹年龄分析和中酸性侵入岩角闪石压力计分析揭示了东昆仑东段中生代的岩石隆升剥露冷却历史.巴隆哈图一带中酸性侵入岩角闪石压力计分析结果反映晚海西—印支期以来的总体剥露幅度约8~9km,早二叠世至晚三叠世初剥蚀作用极为缓慢,大约为20~40m/Ma.不同高程样品的锆石裂变径迹年龄分析结果揭示了东昆仑地区东段在中晚侏罗世处于缓慢的岩石隆升剥露阶段,其中中侏罗世相对较快,抬升速率77~88m/Ma,晚侏罗世相对较慢,抬升速率小于37m/Ma,且呈减慢趋势,这种减慢趋势反映了早中侏罗世之交强构造抬升期后的逐渐衰退.锆石裂变径迹—磷灰石裂变径迹年龄分析结果反映了中侏罗世以来的剥蚀速率一般不超过55m/Ma,岩石的剥蚀速率与岩石的抬升速率基本为同一量级,中侏罗世—白垩纪剥蚀作用与岩石抬升作用基本处于平衡状态。  相似文献   
18.
The Coastal Range in eastern Taiwan contains the remnants of the Pliocene–Pleistocene retro‐foredeep basin of the ongoing Penglai orogeny. These sedimentary successions record the earliest exhumation of the Central Range, Taiwan. We dated detrital Plio‐Pleistocene sediments in the Coastal Range using multiple thermochronometers [fission‐track, zircon (U–Th)/He and U/Pb dating] to document changes in exhumation rate through time. Fission‐track grain ages in 2–4‐Myr‐old sediments were not reset by the Penglai orogeny and reflect the early stage removal of the sedimentary cover. This early stage, when exhumation rates were low, could encompass both the accretionary wedge phase of the orogen and the early arc–continent collision. Sediments younger than 2‐Myr‐old yield Pliocene zircon fission‐track grain ages and suggest that exhumation, transport and deposition occurred within 0.4–1.5 Myr. The recorded onset of rapid exhumation in the Pliocene is contemporaneous with other major tectonic changes in the region, including an increase in subsidence rate in both the pro‐ and retro‐foredeep basins and a change in the wedge kinematics from internal shortening to underplating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号