全文获取类型
收费全文 | 277篇 |
免费 | 12篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 24篇 |
地球物理 | 76篇 |
地质学 | 107篇 |
海洋学 | 21篇 |
天文学 | 29篇 |
自然地理 | 31篇 |
出版年
2021年 | 3篇 |
2020年 | 5篇 |
2019年 | 7篇 |
2018年 | 12篇 |
2017年 | 4篇 |
2016年 | 3篇 |
2015年 | 9篇 |
2014年 | 14篇 |
2013年 | 20篇 |
2012年 | 18篇 |
2011年 | 11篇 |
2010年 | 7篇 |
2009年 | 13篇 |
2008年 | 8篇 |
2007年 | 10篇 |
2006年 | 14篇 |
2005年 | 4篇 |
2004年 | 8篇 |
2003年 | 9篇 |
2002年 | 2篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 5篇 |
1998年 | 6篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 5篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1988年 | 6篇 |
1987年 | 5篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1983年 | 5篇 |
1982年 | 3篇 |
1981年 | 8篇 |
1980年 | 6篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1970年 | 5篇 |
1968年 | 1篇 |
排序方式: 共有289条查询结果,搜索用时 13 毫秒
141.
Active microwave remote sensing observations of backscattering, such as C‐band vertically polarized synthetic aperture radar (SAR) observations from the second European remote sensing (ERS‐2) satellite, have the potential to measure moisture content in a near‐surface layer of soil. However, SAR backscattering observations are highly dependent on topography, soil texture, surface roughness and soil moisture, meaning that soil moisture inversion from single frequency and polarization SAR observations is difficult. In this paper, the potential for measuring near‐surface soil moisture with the ERS‐2 satellite is explored by comparing model estimates of backscattering with ERS‐2 SAR observations. This comparison was made for two ERS‐2 overpasses coincident with near‐surface soil moisture measurements in a 6 ha catchment using 15‐cm time domain reflectometry probes on a 20 m grid. In addition, 1‐cm soil moisture data were obtained from a calibrated soil moisture model. Using state‐of‐the‐art theoretical, semi‐empirical and empirical backscattering models, it was found that using measured soil moisture and roughness data there were root mean square (RMS) errors from 3·5 to 8·5 dB and r2 values from 0·00 to 0·25, depending on the backscattering model and degree of filtering. Using model soil moisture in place of measured soil moisture reduced RMS errors slightly (0·5 to 2 dB) but did not improve r2 values. Likewise, using the first day of ERS‐2 backscattering and soil moisture data to solve for RMS surface roughness reduced RMS errors in backscattering for the second day to between 0·9 and 2·8 dB, but did not improve r2 values. Moreover, RMS differences were as large as 3·7 dB and r2 values as low as 0·53 between the various backscattering models, even when using the same data as input. These results suggest that more research is required to improve the agreement between backscattering models, and that ERS‐2 SAR data may be useful for estimating fields‐scale average soil moisture but not variations at the hillslope scale. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
142.
A framework for testing the ability of models to project climate change and its impacts 总被引:1,自引:0,他引:1
J. C. Refsgaard H. Madsen V. Andréassian K. Arnbjerg-Nielsen T. A. Davidson M. Drews D. P. Hamilton E. Jeppesen E. Kjellström J. E. Olesen T. O. Sonnenborg D. Trolle P. Willems J. H. Christensen 《Climatic change》2014,122(1-2):271-282
Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections. 相似文献
143.
Donald A. Davidson 《地球表面变化过程与地形》1983,8(2):171-175
This short communication describes difficulties of sample preparation associated with the determination of plastic and liquid limits using a drop-cone penetrometer. Problems of sample packing, soil moisture distribution and degree of remoulding are identified. These problems are particularly relevant in influencing liquid limit values whilst the effects on plastic limits are less marked. It is concluded that if the need is for the quick determination of liquid and plastic limits for general classification purposes, then the traditional Casagrande and thread methods are adequate. If these limits require to be measured with greater precision using the drop-cone technique, then careful consideration must be given to sample preparation. 相似文献
144.
145.
Garry G. Lowder 《Contributions to Mineralogy and Petrology》1970,26(4):324-340
The Talasea Peninsula is composed of a chain of Quaternary volcanoes whose lavas range from basalt to rhyolite. The peninsula is situated in an orogenic environment and the lavas, while essentially calc-alkaline, show some differences from other orogenic suites on the Pacific rim. The most distinctive feature of the Talasea series is absolute iron enrichment in some lavas. Mineralogically, the andesites are characterized by phenocrysts of plagioclase, orthopyroxene, clinopyroxene and titanomagnetite, while the basalts lack titanomagnetite phenocrysts but contain olivine. The acid rocks have a mineralogy similar to that of the andesites, but also contain quartz, amphibole, biotite and ilmenite. The compositions of coexisting titanomagnetite and ilmenite in the acid lavas indicate equilibration temperatures in the range 920° to 860° C and oxygen fugacities (
) above those of the fayalitemagnetite-quartz buffer assemblage. The mineralogical evidence supports the hypothesis of a crystal fractionation origin for this series and there is a possibility that the
was more or less constant during the early stages of its evolution. The iron enriched lavas may be an offshoot from the main line of descent, resulting from near-surface fractionation, with the dominance of plagioclase in the crystal residuum producing an iron-rich liquid. 相似文献
146.
In order to understand the complex multi-parameter system of destruction of organic material on the surface of Mars, step-by-step laboratory simulations of processes occurring on the surface of Mars are necessary. This paper describes the measured effects of two parameters, a CO2 atmosphere and low temperature, on the destruction rate of amino acids when irradiated with Mars-like ultraviolet light (UV). The results show that the presence of a 7 mbar CO2 atmosphere does not affect the destruction rate of glycine, and that cooling the sample to 210 K (average Mars temperature) lowers the destruction rate by a factor of 7. The decrease in the destruction rate of glycine by cooling the sample is thought to be predominantly caused by the slower reaction kinetics. When these results are scaled to Martian lighting conditions, cold thin films of glycine are assumed to have half-lives of 250 h under noontime peak illumination. It has been hypothesised that the absence of detectable native organic material in the Martian regolith points to the presence of oxidising agents. Some of these agents might form via the interaction of UV with compounds in the atmosphere. Water, although a trace component of Mars’ atmosphere, is suggested to be a significant source of oxidising species. However, gaseous CO2 or adsorbed H2O layers do not influence the photodestruction of amino acids significantly in the absence of reactive soil. Other mechanisms such as chemical processes in the Martian regolith need to be effective for rapid organic destruction. 相似文献
147.
The relevant data for the known 147 pulsars are presented in graphical and tabular forms. Various data correlations are discussed, and a detailed analysis of pulsar dispersion measures and distances is given. The range of the electron densities in the diffuse interstellar medium is found to be 0.01 cm–3n
e0.1 cm–3, and n
e0.03 cm–3. The dispersion scale height for pulsars is found to be 5.9±0.7 pc cm–3 implying a linear scale height of 200 pc, which is much smaller than the electron scale height of our Galaxy.Astrophysics and Space Science Review Paper. 相似文献
148.
Paula M. Davidson John Grover Donald H. Lindsley 《Contributions to Mineralogy and Petrology》1982,80(1):88-102
Experiments at high pressure and temperature indicate that excess Ca may be dissolved in diopside. If the (Ca, Mg)2Si2O6 clinopyroxene solution extends to more Ca-rich compositions than CaMgSi2O6, macroscopic regular solution models cannot strictly be applied to this system. A nonconvergent site-disorder model, such as that proposed by Thompson (1969, 1970), may be more appropriate. We have modified Thompson's model to include asymmetric excess parameters and have used a linear least-squares technique to fit the available experimental data for Ca-Mg orthopyroxene-clinopyroxene equilibria and Fe-free pigeonite stability to this model. The model expressions for equilibrium conditions \(\mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction A) and \(\mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction B) are given by: 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Mg}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ W_{21} [2(X_{{\text{Ca}}}^{{\text{M2}}} )^3 - (X_{{\text{Ca}}}^{{\text{M2}}} ] \hfill \\ {\text{ + 2W}}_{{\text{22}}} [X_{{\text{Ca}}}^{{\text{M2}}} )^2 - (X_{{\text{Ca}}}^{{\text{M2}}} )^3 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{Wo}}}^{{\text{opx}}} )^2 \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Ca}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ 2W_{21} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^2 - (X_{{\text{Mg}}}^{{\text{M2}}} )^3 ] \hfill \\ {\text{ + W}}_{{\text{22}}} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^3 - (X_{{\text{Mg}}}^{{\text{M2}}} )^2 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{En}}}^{{\text{opx}}} )^2 \hfill \\ \hfill \\ \end{gathered} $$ where 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = 2.953 + 0.0602{\text{P}} - 0.00179{\text{T}} \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = 24.64 + 0.958{\text{P}} - (0.0286){\text{T}} \hfill \\ {\text{W}}_{{\text{21}}} = 47.12 + 0.273{\text{P}} \hfill \\ {\text{W}}_{{\text{22}}} = 66.11 + ( - 0.249){\text{P}} \hfill \\ {\text{W}}^{{\text{opx}}} = 40 \hfill \\ \Delta {\text{G}}_*^0 = 155{\text{ (all values are in kJ/gfw)}}{\text{.}} \hfill \\ \end{gathered} $$ . Site occupancies in clinopyroxene were determined from the internal equilibrium condition 1 $$\begin{gathered} \Delta G_{\text{E}}^{\text{O}} = - {\text{RT 1n}}\left[ {\frac{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}{{X_{{\text{Ca}}}^{{\text{M2}}} \cdot X_{{\text{Mg}}}^{{\text{M1}}} }}} \right] + \tfrac{1}{2}[(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} )(2{\text{X}}_{{\text{Ca}}}^{{\text{M2}}} - 1) \hfill \\ {\text{ + }}\Delta G_*^0 (X_{{\text{Ca}}}^{{\text{M1}}} - X_{{\text{Ca}}}^{{\text{M2}}} ) + \tfrac{3}{2}(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} ) \hfill \\ {\text{ (1}} - 2X_{{\text{Ca}}}^{{\text{M1}}} )(X_{{\text{Ca}}}^{{\text{M1}}} + \tfrac{1}{2})] \hfill \\ \end{gathered} $$ where δG E 0 =153+0.023T+1.2P. The predicted concentrations of Ca on the clinopyroxene Ml site are low enough to be compatible with crystallographic studies. Temperatures calculated from the model for coexisting ortho- and clinopyroxene pairs fit the experimental data to within 10° in most cases; the worst discrepancy is 30°. Phase relations for clinopyroxene, orthopyroxene and pigeonite are successfully described by this model at temperatures up to 1,600° C and pressures from 0.001 to 40 kbar. Predicted enthalpies of solution agree well with the calorimetric measurements of Newton et al. (1979). The nonconvergent site disorder model affords good approximations to both the free energy and enthalpy of clinopyroxenes, and, therefore, the configurational entropy as well. This approach may provide an example for Febearing pyroxenes in which cation site exchange has an even more profound effect on the thermodynamic properties. 相似文献
149.
150.
Raman spectroscopic studies of daughter crystals of hambergite [Be2BO3(OH, F)] in primary melt and secondary fluid inclusions in morganite crystals from the Muiane pegmatite, Mozambique, show that the inclusions have extremely high beryllium concentrations, corresponding to as much as 10.6% (g/g) in melt inclusions and 1.25% (g/g) BeO in fluid inclusions. These melt and fluid inclusions were trapped at about 610°C and 277°C, respectively. We propose two possible mechanisms for the formation of the hambergite crystals: (i) direct crystallization from a boron- and beryllium-rich pegmatite-forming melt or (ii) these are daughter crystals produced by the retrograde reaction of the boron-rich inclusion fluid with the beryl host, after release of boric acid from the primary trapped metastable volatile-rich silicate melt during cooling and recrystallization. Although we favor the second option, either case demonstrate the extent to which Be maybe concentrated in a boron-rich fluid at relatively high temperatures, and in which species of Be maybe transported. One important constraint on the stability of the hambergite paragenesis is temperature; at temperatures of ≥650°C (at 2 kbar) hambergite is not stable and converts to bromellite [BeO]. 相似文献