首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   3篇
大气科学   3篇
地球物理   32篇
地质学   22篇
海洋学   3篇
天文学   16篇
自然地理   7篇
  2021年   2篇
  2020年   2篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2007年   4篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
81.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   
82.
Incision as a result of fluvial erosion is an important process to model when simulating landform evolution. For gullies, it is apparent that coupled with the processes that cause incision there must be a range of processes that stop incision. Once started, rills and gullies will grow infinitely without a reduction in support area and/or being arrested by deposition and armouring. Some of these processes have been well studied under the heading of inter-rill erosion. Other limiting processes are related to the shape of the landform and how downstream deposition areas are linked geomorphically to the upstream gullies. Armouring is also an important process that reduces gully incision and extension, where the gully erodes to bedrock and the resistant base limits further development. Post-mining landscapes are new surfaces with new materials and provide the opportunity to examine gully initiation, extension and stabilization. The work presented here has largely been driven by the mining industry, where there has been a need to assess erosion over hazardous wastes like mine tailings and low-level nuclear waste. We demonstrate the usefulness of computer-based landscape evolution models and the more recent soilscape models (that include both surface and subsurface processes) to understand both fluvial and diffusive processes as well as armouring in a digital elevation model framework (as well as landscape evolution). Landscape evolution models provide insights into complex non-linear systems such as gullies. A key need is that of field data to parameterize and validate the models. It is argued that current models have more capability than field data available for parameterization and importantly the validation of model outputs.  相似文献   
83.
We present 20–110 µm absorbance spectra of H2O ice, deposited on amorphous carbon and silicate substrates, obtained over the 10–140 K temperature range. The measurements have been carried out in a manner that simulates the deposition, warming and cooling of H2O ice mantles on interstellar and circumstellar grains. For H2O ice films deposited on these substrates we find (i) similar 44-µm-band peak wavelength temperature dependences, (ii) no bandshape differences in the respective spectra, and (iii) a structural phase transition occurring between 120 and 130 K. In comparison with published data obtained using a polyethylene substrate, the 52-µm feature (the longitudinal optical mode) observed in our spectra is less prominent. This suggests the presence of material-dependent substrate effects that can alter the appearance of the H2O far-infrared spectrum. The crystallization temperature of H2O ice films deposited on our amorphous silicate substrate is significantly different from that reported by Moore et al. (1994) , who found crystallization temperatures down to < 20 K for ice also deposited on an amorphous silicate substrate. This is attributed to differences in the surface structures of the respective substrates. This may indicate that, at least in the context of laboratory measurements, substrate material composition is not as significant as substrate surface structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号