首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
大气科学   3篇
地球物理   32篇
地质学   22篇
海洋学   3篇
天文学   16篇
自然地理   7篇
  2021年   2篇
  2020年   2篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2007年   4篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有83条查询结果,搜索用时 78 毫秒
71.
The Northern Hemisphere ice sheets decayed rapidly during deglacial phases of the ice-age cycle, producing meltwater fluxes that may have been of sufficient magnitude to perturb oceanic circulation. The continental record of ice-sheet history is more obscured during the growth and advance of the last great ice sheets, ca. 120,000–20,000 yr B.P., but ice cores tell of high-amplitude, millennial-scale climate fluctuations that prevailed throughout this period. These climatic excursions would have provoked significant fluctuation of ice-sheet margins and runoff variability whenever ice sheets extended to mid-latitudes, giving a complex pattern of freshwater delivery to the oceans. A model of continental surface hydrology is coupled with an ice-dynamics model simulating the last glacial cycle in North America. Meltwater discharged from ice sheets is either channeled down continental drainage pathways or stored temporarily in large systems of proglacial lakes that border the retreating ice-sheet margin. The coupled treatment provides quantitative estimates of the spatial and temporal patterns of freshwater flux to the continental margins. Results imply an intensified surface hydrological environment when ice sheets are present, despite a net decrease in precipitation during glacial periods. Diminished continental evaporation and high levels of meltwater production combine to give mid-latitude runoff values that are highly variable through the glacial cycle, but are two to three times in excess of modern river fluxes; drainage to the North Atlantic via the St. Lawrence, Hudson, and Mississippi River catchments averages 0.356 Sv for the period 60,000–10,000 yr B.P., compared to 0.122 Sv for the past 10,000 yr. High-amplitude meltwater pulses to the Gulf of Mexico, North Atlantic, and North Pacific occur throughout the glacial period, with ice-sheet geometry controlling intricate patterns of freshwater routing variability. Runoff from North America is staged in the final deglaciation, with a stepped sequence of pulses through the Mississippi, St. Lawrence, Arctic, and Hudson Strait drainages.  相似文献   
72.
73.
The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/1). Treated sewage with a mean chloride concentration of 170 mg/1 was injected through a single well for 12 months at a mean rate of 4.7 × 105 cubic feet per day. The volume of water injected during the year was 1.7 × 108 cubic feet. Dissolved oxygen was contained in the sewage prior to injection. Water removed from the injection zone during injection was essentially free of oxygen. Probable growth of denitrifying bacteria and, thus, microbial denitri-fication, was suggested by bacterial counts in water from two observation wells that were close to the injection well. The volume fraction of treated sewage in water from wells located 35 feet and 733 feet from the injection well and open to the upper part of the injection zone stabilized at about 0.9 and 0.75, respectively. Chloride concentrations stabilized at about 1,900 mg/1 in water from the well that was 35 feet from the injection well and stabilized at about 4,000 mg/1 in water from the well that was 733 feet from the injection well. These and other data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.  相似文献   
74.
75.
76.
77.
Aerogeophysical and seismological data from a geophysical survey in the interior of East Antarctica were used to develop a conceptual tectonic model for the Lake Vostok region. The model is constrained using three independent data sets: magnetic, seismic, and gravimetric. A distinct change in the aeromagnetic anomaly character across Lake Vostok defines a crustal boundary. Depth to magnetic basement estimates image a 400-km-wide and more than 10-km-deep sedimentary basin west of the lake. Analysis of teleseismic earthquakes suggests a relatively thin crust beneath Lake Vostok consistent with predictions from kinematic and flexural gravity modelling. Magnetic, gravity, and subglacial topography data reveal a tectonic boundary within East Antarctica. Based on our kinematic and flexural gravity modelling, this tectonic boundary appears to be the result of thrust sheet emplacement onto an earlier passive continental margin. No data presently exist to date directly either the timing of passive margin formation or the subsequent shortening phase. The preserved thrust sheet thickness is related to the thickness of the passive margin crust. Because a significant amount of time is required to erode the thrust sheet topography, we suggest that these tectonic events are Proterozoic in age. Minor normal reactivation of the thrust sheet offers a simple mechanism to explain the formation of the Lake Vostok Basin. A low level of seismicity exists in the vicinity of this tectonic boundary. The existence of a crustal boundary in the Antarctic interior provides new constraints on the Proterozoic architecture of the East Antarctic craton.  相似文献   
78.
The Transantarctic Mountains are a major geologic boundary that bisects the Antarctic continent, separating the low-lying, tectonically active terrains of West Antarctica from the East Antarctic craton. A new comprehensive aerogeophysical data set, extending 1150 km from the Ross Sea into the interior of East Antarctica provides insights into the complex structure inland of the Transantarctic Mountains. Geophysical maps, compiled from 21 000 km of gravity, magnetic and subglacial topography data, outline the boundaries of several geologic and tectonic segments within the survey area. The coherent pattern in magnetic data and mesa topography suggests a subglacial extent of the Transantarctic Mountains 400–500 km inland the last exposed rock outcrops. We estimate the maximum thickness of a potential sediment infill in the Wilkes Subglacial Basin to be less than 1 km, based on gravity modeling and source depth estimates from magnetic data. The coherent nature of the potential field and topography data, together with the northwest–southeast trends, define the Adventure Subglacial Trench and the Resolution Subglacial Highlands as a tectonic unit. The crustal structure and the strong similarity of the observed gravity with fold-and-thrust belts suggest a compressional scenario for the origin of the Adventure Subglacial Trench and the Resolution Subglacial Highlands. The complexity and apparent structural control of the Wilkes Subglacial Basin raise the issue of what influence pre-existing structures may have played in the formation of the Transantarctic Mountains system. The previous hypothesis of a thermal boundary beneath the mountains is difficult to reconcile with our new gravity data. The apparent difficulties to match our new data with certain key aspects of previous models suggests that a reassessment of the existing uplift models is necessary. We have modeled the prominent gravity anomaly over the Transantarctic Mountains with thicker crust.  相似文献   
79.
A large rock and ice avalanche occurred on the north face of Mount Steele, southwest Yukon Territory, Canada, on July 24, 2007. In the days and weeks preceding the landslide, several smaller avalanches initiated from the same slope. The ice and rock debris traveled a maximum horizontal distance 5.76 km with a maximum vertical descent of 2,160 m, leaving a deposit 3.66 km2 in area on Steele Glacier. The seismic magnitude estimated from long-period surface waves (M s) is 5.2. Modeling of the waveforms suggests an estimated duration of approximately 100 s and an average velocity of between 35 and 65 m/s. This landslide is one of 18 large rock avalanches known to have occurred since 1899 on slopes adjacent to glaciers in western Canada. We describe the setting, reconstruct the event chronology and present a preliminary characterization of the Mount Steele ice and rock avalanches based on field reconnaissance, analysis of seismic records and an airborne LiDAR survey. We also present the results of a successful dynamic simulation for the July 24 event.  相似文献   
80.
The US Army ERDC CRREL and the US Department of Agriculture Natural Resources Conservation Service developed a square electronic snow water equivalent (e‐SWE) sensor as an alternative to using fluid‐filled snow pillows to measure SWE. The sensors consist of a centre panel to measure SWE and eight outer panels to buffer edge stress concentrations. Seven 3 m square e‐SWE sensors were installed in five different climate zones. During the 2011–2012 winter, 1.8 and 1.2 m square e‐SWE sensors were installed and operated in Oregon. With the exception of New York State and Newfoundland, the e‐SWE sensors accurately measured SWE, with R2 values between the sensor and manual SWE measurements of between 0.86 and 0.98. The e‐SWE sensor at Hogg Pass, Oregon, accurately measured SWE during the past 8 years of operations. In the thin, icy snow of New York during midwinter 2008–2009, the e‐SWE sensors overmeasured SWE because of edge stress concentrations associated with strong icy layers and a shallow snow cover. The New York e‐SWE sensors' measurement accuracy improved in spring 2009 and further improved during the 2011–2012 winter with operating experience. At Santiam Junction, measured SWE from the 1.8 and 1.2 m square e‐SWE sensors agreed well with the snow pillow, 3 m square e‐SWE sensor, and manual SWE measurements until February 2013, when dust and gravel blew onto the testing area resulting in anomalous measurements. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号