The OSIRIS cameras on the Rosetta spacecraft observed Comet 9P/Tempel 1 from 5 days before to 10 days after it was hit by the Deep Impact projectile. The Narrow Angle Camera (NAC) monitored the cometary dust in 5 different filters. The Wide Angle Camera (WAC) observed through filters sensitive to emissions from OH, CN, Na, and OI together with the associated continuum. Before and after the impact the comet showed regular variations in intensity. The period of the brightness changes is consistent with the rotation period of Tempel 1. The overall brightness of Tempel 1 decreased by about 10% during the OSIRIS observations. The analysis of the impact ejecta shows that no new permanent coma structures were created by the impact. Most of the material moved with . Much of it left the comet in the form of icy grains which sublimated and fragmented within the first hour after the impact. The light curve of the comet after the impact and the amount of material leaving the comet ( of water ice and a presumably larger amount of dust) suggest that the impact ejecta were quickly accelerated by collisions with gas molecules. Therefore, the motion of the bulk of the ejecta cannot be described by ballistic trajectories, and the validity of determinations of the density and tensile strength of the nucleus of Tempel 1 with models using ballistic ejection of particles is uncertain. 相似文献
The volcanogenic exhalative Tverrfjell deposit occurs in a sequence of predominantely mafic submarine meta-volcanics, interlayered with geosynclinal pelitic sediments, turbidites and volcanic breccias, belonging to the Early Cambrian to Early Arenigian Støren Group. Two major deformational phases and low to medium grade metamorphic conditions are recognized in the study area. Basalts are mainly tholeiitic but alkaline types occur as well. Extensive fractionation produced highly evolved basalts and even andesites. Basalt compositions are comparable to Type II-ocean floor basalt. The copper/zinc ores of the Tverrfjell deposit are strictly confined to an andesitic extrusive body. An extensive magma chamber is postulated to explain magma fractionation, and as a heat source that generated the exhalative Tverrfjell ore body. It is suggested that the deposit was formed at an intraplate volcanic center or back-arc spreading center.
Zusammenfassung Die vulkanogen-exhalativ gebildete Tverrfjell-Lagerstätte befindet sich innerhalb einer Abfolge überwiegend mafischer, submariner Metavulkamte, die mit geosynklinalen pelitischen Sedimenten, Turbiditen und vulkanischen Brekkzien wechsellagern. Diese Gesteine gehören zur Støren-Gruppe, die vom Unterkambrium bis zum frühen Arenig reicht. Zwei Hauptdeformationsphasen in Verbindung mit niedrig bis mittelgradiger Metamorphose können im Arbeitsgebiet nachgewiesen werden. Die Basalte sind zumeist tholeiitisch, jedoch treten auch alkalibasaltische Typen auf. Durch starke Fraktionierung sind hoch entwikkelte Basaltmagmen und sogar Andesite entstanden. Die Basalte können mit Typ II-Ozeanbodenbasalten verglichen werden. Die Kupfer/Zinkerze der Tverrfjell-Lagerstätte sind strikt an einen andesitischen Extrusivkörper gebunden. Eine ausgedehnte Magmenkammer wird postuliert, in welcher die Magmenfraktionierung stattfand, und die als Wärmequelle für die Bildung des Tverrfjellerzkörpers angesehen wird. Aufgrund der Untersuchungsergebnisse wird angenommen, daß die Lagerstätte in einem Intraplatten-Vulkanzentrum oder in einem Back-arc spreading centre gebildet wurde.
Résumé Le gisement volcanogénétique exhalatif du Tverrfjell se trouve au sein d'une série de métavolcanites sous-marines, surtout basiques, qui alternent avec des pélites géosynclinales, des turbidites et des brèches volcaniques. Ces roches appartiennent au groupe de Støren qui s'étend du Cambrien inférieur jusqu'à l'éo-Arénigien. Dans cette région, deux phases déformatives majeures ont été reconnues, liées à un métamorphisme de degré faible à moyen.La plupart des basaltes sont de type tholéiitique, mais il existe aussi des basaltes alcalins. Un fractionnement poussé a engendré magmas basaltiques très évolués et même des andésites. Les compositions des basaltes sont comparables à celles du «basalte océanique de type II». La minéralisation en Cu-Zn de Tverrfjell est liée strictement à une masse extrusive andésitique. Pour expliquer le fractionnement magmatique, on admet l'existence d'une de chaleur lors de la formation du gisement de Tverrfjell. Ce gisement a dû se former soit dans un centre volcanique intraplaque, soit dans une zone d'expansion d'arrière-arc.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices. 相似文献
On rimmed shelves of Bahamian-type, characterized by chlorozoan associations and typical of tropical seas, carbonate production keeps pace with normal sea-level rise except when rapid rise or drastic environmental changes occurs. On the other hand, open temperate carbonate shelves are characterized by low carbonate production of the foramol association (molluscs, benthic foraminifera, bryozoans, coralline algae, etc.) and generally show seaward relict sediments, because carbonate production cannot keep pace with normal rate of sea-level change.
Several examples of recent drowning foramol carbonate platforms (e.g., large areas of the Mediterranean Sea, eastern-northeastern Yucatan Shelf) as well as analogous ancient drowned foramol-type carbonate platforms (e.g., early to middle Miocene of the Southern Apennines; Miami Terrace) may support the idea that the drowning of many ancient carbonate platforms has been favoured by their biogenic (foramol sensu lato) constitution. Because of their typically low rate of growth, foramol carbonate platforms are fated to be drowned even if the sea-level rise is one with which the normal growth of chlorozoan platforms can keep pace. Similar conditions may also occur in tropical areas where variations in environmental conditions, such as the presence of cold waters, changes in salinity and increased nutrients, preclude the development of chlorozoan associations. 相似文献
In spite of the increasing diffusion of tunnel boring machines, conventional tunnelling is still preferred for economic reasons in case of short tunnels, unconventional cross sections or irregular tunnel trajectories. In conventional tunnelling, the mechanical response of the tunnel front is a main concern and, when tunnels are excavated in cohesive soils, this is dominated by the time factor, related to geometry, to the mean excavation rate and to the hydro-mechanical properties of the materials involved. This is particularly evident during excavation standstill: front displacements progressively increase with time and, in many cases, the system response under long-term conditions becomes unstable. In conventional tunnelling, a common technique employed to improve the system response (under both short- and long-term conditions) is the installation of fibreglass tubes within the advance core. In this paper, the mechanical response of both unreinforced and reinforced deep tunnel fronts in cohesive soils is experimentally analysed. In particular, the results of a series of 1 g small-scale tests, taking into account both the influence of the excavation rate (the unloading time) on the system response and the evolution with time of the tunnel face displacements, induced by a rapid reduction in the horizontal stress applied on the tunnel face, are reported. 相似文献
The fluxes of carbon, nitrogen and phosphorus through an off-shore long-line Mytilus galloprovincialis farm during a typical rearing cycle were estimated by combining a simple population dynamic model, based on a new individual model, and a set of field data, concerning the composition of the seston, as well as that of mussel meat and faeces. The individual model, based on an energy budget, was validated against a set of original field data, which were purposely collected from July 2006 to May 2007 in the North-Western Adriatic Sea (Italy) and was further tested using historical data. The model was upscaled to the population level by means of a set of Monte Carlo simulations, which were used for estimating the size structure of the population. The daily fluxes of C, N and P associated with mussel filtration, excretion and faeces and pseudo-faeces production were integrated over the 10-month-long rearing cycle and compared with the total amount of C, N and P removed by harvesting. The results indicate that the individual model compares well with an existing literature model and provides reliable estimations of the growth of mussel specimen over a range of trophic conditions which are typical of the Northern Adriatic Sea coastal area. The results of the budget calculation indicate that, even though the harvest represents a net removal of phosphorus and nitrogen from the ecosystem, the mussel farm increases the retention time of both nutrients in the coastal area, via the deposition of faeces and pseudo-faeces on the sea-bed. In fact, the amount of nitrogen associated with deposition is approximately twice the harvested one and the amount of phosphorus is approximately five times higher. These findings are in qualitative agreement with the results of literature budget and model calculations carried out in a temperate coastal embayment. This agreement suggests that the proper assessment of the overall effect of long-line mussel farming on both the benthic and pelagic ecosystem asks for an integrated modelling approach, which should include the dynamic of early diagenesis processes, as well as of that of nutrients released from the surface sediment. 相似文献
Organic matter (OM) in mineral-organic associations (MOAs) represents a large fraction of carbon in terrestrial ecosystems which is considered stable against biodegradation. To assess the role of MOAs in carbon cycling, there is a need to better understand (i) the time-dependent biogeochemical evolution of MOAs in soil, (ii) the effect of the mineral composition on the physico-chemical properties of attached OM, and (iii) the resulting consequences for the stabilization of OM. We studied the development of MOAs across a mineralogical soil gradient (0.3-4100 kyr) at the Hawaiian Islands that derived from basaltic tephra under comparable climatic and hydrological regimes. Mineral-organic associations were characterized using biomarker analyses of OM with chemolytic methods (lignin phenols, non-cellulosic carbohydrates) and wet chemical extractions, surface area/porosity measurements (N2 at 77 K and CO2 at 273 K), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results show that in the initial weathering stage (0.3 kyr), MOAs are mainly composed of primary, low-surface area minerals (olivine, pyroxene, feldspar) with small amounts of attached OM and lignin phenols but a large contribution of microbial-derived carbohydrates. As high-surface area, poorly crystalline (PC) minerals increase in abundance during the second weathering stage (20-400 kyr), the content of mineral-associated OM increased sharply, up to 290 mg C/g MOA, with lignin phenols being favored over carbohydrates in the association with minerals. In the third and final weathering stage (1400-4100 kyr), metastable PC phases transformed into well crystalline secondary Fe and Al (hydr)oxides and kaolin minerals that were associated with less OM overall, and depleted in both lignin and carbohydrate as a fraction of total OM. XPS, the N2 pore volume data and OM-mineral volumetric ratios suggest that, in contrast to the endmember sites where OM accumulated at the surfaces of larger mineral grains, topsoil MOAs of the 20-400-kyr sites are composed of a homogeneous admixture of small-sized PC minerals and OM, which originated from both adsorption and precipitation processes. The chemical composition of OM in surface-horizon MOAs, however, was largely controlled by the uniform source vegetation irrespective of the substrate age whereas in subsoil horizons, aromatic and carboxylic C correlated positively with oxalate-extractable Al and Si and CuCl2-extractable Al concentrations representing PC aluminosilicates and Al-organic complexes (r2 > 0.85). Additionally, XPS depth profiles suggest a zonal structure of sorbed OM with aromatic carbons being enriched in the proximity of mineral surfaces and amide carbons (peptides/proteins) being located in outer regions of MOAs. Albeit the mineralogical and compositional changes of OM, the rigidity of mineral-associated OM as analyzed by DSC changed little over time. A significantly reduced side chain mobility of sorbed OM was, however, observed in subsoil MOAs, which likely arose from stronger mineral-organic bindings. In conclusion, our study shows that the properties of soil MOAs change substantially over time with different mineral assemblages favoring the association of different types of OM, which is further accentuated by a vertical gradient of OM composition on mineral surfaces. Factors supporting the stabilization of sorbed OM were (i) the surface area and reactivity of minerals (primary or secondary crystalline minerals versus PC secondary minerals), (ii) the association of OM with micropores of PC minerals (via ‘sterically’ enhanced adsorption), (iii) the effective embedding of OM in ‘well mixed’ arrays with PC minerals and monomeric/polymeric metal species, (iv) the inherent stability of acidic aromatic OM components, and (iv) an impaired segmental mobility of sorbed OM, which might increase its stability against desorption and microbial utilization. 相似文献