首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   10篇
地球物理   14篇
地质学   50篇
海洋学   6篇
天文学   4篇
综合类   1篇
自然地理   15篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   3篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
11.
Marine habitats worldwide are increasingly pressurized by climate change, especially along the Antarctic Peninsula. Well-studied areas in front of rapidly retreating tidewater glaciers like Potter Cove are representative for similar coastal environments and, therefore, shed light on habitat formation and development on not only a local but also regional scale. The objective of this study was to provide insights into habitat distribution in Potter Cove, King George Island, Antarctica, and to evaluate the associated environmental processes. Furthermore, an assessment concerning the future development of the habitats is provided. To describe the seafloor habitats in Potter Cove, an acoustic seabed discrimination system (RoxAnn) was used in combination with underwater video images and sediment samples. Due to the absence of wave and current measurements in the study area, bed shear stress estimates served to delineate zones prone to sediment erosion. On the basis of the investigations, two habitat classes were identified in Potter Cove, namely soft-sediment and stone habitats that, besides influences from sediment supply and coastal morphology, are controlled by sediment erosion. A future expansion of the stone habitat is predicted if recent environmental change trends continue. Possible implications for the Potter Cove environment, and other coastal ecosystems under similar pressure, include changes in biomass and species composition.  相似文献   
12.
The Chihuahua City region, located in the semiarid-arid northern highlands of Mexico, has experienced intensive groundwater abstraction during the last 40 years to meet water demands in the region. A geochemical survey was carried out to investigate the evolution from baseline to modern conditions of a 130-km flow path including the El Sauz–Chihuahua–Aldama–San Diego de Alcalá regions. The research approach included the use of major chemical elements, chlorofluorocarbons and environmental isotope (18O, 2H, 13C and 14C) tracers. Stable isotopes indicate that groundwater evolves from the evaporation of local rainfall and surface water. Groundwater located at the lower end of the flow section is up to 6000 years old and older groundwater in the order of 9000 years BP was found in a deep well located in the upper part of the flow system, implying contribution from a neighbour basin. The background groundwater chemistry upstream of Chihuahua City results from feldspar weathering. Beyond Chihuahua City the chemical conditions are strongly modified owing to disposal of sewage from public and industrial water supplies into the Rio Chuviscar, subsequent allocation of this water to agricultural irrigation areas and direct infiltration under the river bed. As a consequence, anions like chloride and sulphate are mainly related to surface sources. Nitrate is controlled in part by sewage from public supply and industry and in part by agricultural practices. Arsenic and fluoride are related to weathering of rock formations of local mineralized ranges and subsequent enrichment of the basin-fill by magmatic processes. The results of this study have implications for groundwater management in an arid region that depends entirely on groundwater for domestic, industrial and agricultural water consumption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
13.
Continuous monitoring of dissolved organic matter (DOM) character and concentration at hourly resolution is rare, despite the importance of analysing organic matter variability at high‐temporal resolution to evaluate river carbon budgeting, river water health by detecting episodic pollution and to determine short‐term variations in chemical and ecological function. The authors report a 2‐week experiment performed on DOM sampled from Bournbrook, Birmingham, UK, an urban river for which spectrophotometric (fluorescence, absorbance), physiochemical (dissolved organic carbon [DOC], electrical conductivity, pH) and isotopic (D/H) parameters have been measured at hourly frequency. Our results show that the river had sub‐daily variations in both organic matter concentration and characteristics. In particular, after relatively high‐magnitude precipitation events, organic carbon concentration increased, with an associated increase in intensity of both humic‐like and tryptophan‐like fluorescence. D/H isotopic ratio demonstrates different hydrological responses to different rainfall events, and organic matter character reflects this difference. Events with precipitation < 2 mm typically yielded isotopically heavy water with relatively hydrophilic DOM and relatively low specific absorbance. Events with precipitation > 2 mm had isotopically lighter water with higher specific absorbance and a decrease in the proportion of microbially derived to humic‐like fluorescence. In our heavily urbanized catchment, we interpret these signals as one where riverine DOM is dominated by storm sewer‐derived ‘old’ organic matter at low‐rainfall amounts and a mixed signal at high‐precipitation amounts where ‘event’ surface runoff‐derived organic matter dominate during storm sewer and combined sewer overflow routed DOM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
14.
Lacustrine deposits of the Malanzán Formation record sedimentation in a small and narrow mountain paleovalley. Lake Malanzán was one of several water bodies formed in the Paganzo Basin during the Late Carboniferous deglaciation. Five sedimentary facies have been recognized. Facies A (Dropstones-bearing laminated mudstones) records deposition from suspension fall-out and probably underflow currents coupled with ice-rafting processes in a basin lake setting. Facies B (Ripple cross-laminated sandstones and siltstones) was deposited from low density turbidity currents in a lobe fringe environment. Facies C (Massive or graded sandstones) is thought to represent sedimentation from high and low density turbidity currents in sand lobes. Facies D (Folded sandstones and siltstones) was formed from slumping in proximal lobe environments. Facies E (Wave-rippled sandstones) records wave reworking of sands supplied by turbidity currents above wave base level.The Lake Malanzán succession is formed by stacked turbidite sand lobe deposits. These lobes were probably formed in proximal lacustrine settings, most likely relatively high gradient slopes. Paleocurrents indicate a dominant direction from cratonic areas to the WSW. Although the overall sequence shows a regressive trend from basin fine-grained deposits to deltaic and braided fluvial facies, individual lobe packages lack of definite vertical trends in bed thickness and grain size. This fact suggests aggradation from multiple-point sources, rather than progradation from single-point sources. Sedimentologic and paleoecologic evidence indicate high depositional rate and sediment supply. Deposition within the lake was largely dominated by event sedimentation. Low diversity trace fossil assemblages of opportunistic invertebrates indicate recolonization of event beds under stressed conditions.Three stages of lake evolutionary history have been distinguished. The vertical replacement of braided fluvial deposits by basinal facies indicates high subsidence and a lacustrine transgressive episode. This flooding event was probably linked to a notable base level rise during postglacial times. The second evolutionary stage was typified by the formation of sand turbidite lobes from downslope mass-movements. Lake history culminates with the progradation of deltaic and braided fluvial systems  相似文献   
15.
The identification and correlation of the Carboniferous-Permian (Gzhelian-Asselian) boundary within the sedimentary sequences of Gondwana has always been a topic of debate. Type latest Carboniferous and earliest Permian marine sequences are characterised by warm tropical faunas and come from the Uralian Region of Russia and Kazakhstan. Faunas include conodonts and fusulinid foraminiferids which are prime tools for correlation. Such faunal groups are absent from most Gondwanan sequences where reliance for correlations must be placed primarily on brachiopods, bivalve molluscs and palynology. The Western Australian marine sequences, with their contained ammonoids, provide a pivotal link for the dating and correlating of Early Permian Gondwanan sequences with those of the type regions and their palynostratigraphical record is essential for trans-Australian correlations and correlations elsewhere throughout Gondwanaland.New data from the fully cored DM Tangorin DDHl bore hole, drilled in the Cranky Corner Basin, New South Wales, Australia, reveals a sequence of descending faunal zones. The stratigraphically highest zone with Eurydesrna cordaturn, encompasses the Late Sakmarian (Sterlitamakian). The middle zone with Torniopsis elongata, Sulciplica c r a m and Trigonotreta tangorini straddles the Sterlitamakian-Tastubian boundary, with the palynomorphs Pseudoreticulatispora pseudoreticulata high in the zone and Granulatisporites confluens low in the zone. An impoverished fauna with Trigonotreta nov., low in the Granulatisporites confluens Zone, is probably of latest Asselian or Tastubian age.Significant new data from Argentina has revealed marine faunas from below the occurrence of Granulatisporites confluens. These are considered to be of Asselian age. Outcrops of the Tupe Formation, with a marine fauna, at La Herradura Creek in the western Paganzo Basin, San Juan Province, are best regarded as being of mid to late Asselian age. The Tupe Fauna has been recognised as the Tivertonia jachalensis-Streptorhynchus inaequiornatus Zone. Previously, this fauna was considered to be of Late Carboniferous or Stephanian age. Three faunal associations are known from the Rio del Peii6n Formation, Rio Blanco Basin, La Rioja Province. The middle assemblage with Tivertonia, Costaturnulus, Kochiproductus and Trigonotreta, appears to correlate well with the Tupe Formation fauna. The lower assemblage, with Streptorhynchus, Etherilosia, Costaturnulus, Trigonotreta and a punctate spiriferid, as well as indeterminate productids, probably of Early Asselian age. The youngest assemblage includes a species ofRhynchopora that is close to Rhynchopora australasica from the latest Asselian-early Tastubian of Western Australia. The marine biostratigraphical data from Argentina has enabled a much greater understanding of the earliest Permian marine faunas to be achieved - a story that is apparently absent from the other cold and cool temperate regions of Gondwana.  相似文献   
16.
17.
18.
Journal of Paleolimnology - Stephanodiscus niagarae Ehrenberg is currently restricted to specific regions of central Mexico, however, during the late Pleistocene, it had a wider distribution in the...  相似文献   
19.
This study investigates structural and adsorption properties of the powdered waste shells of Rapana gastropod and their use as a new cheap adsorbent to remove reactive dye Brilliant Red HE‐3B from aqueous solutions under batch conditions. For the powder shells characterization, solubility tests in acidic solutions and X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform IR spectroscopy (FT‐IR) and thermogravimetric analyses were performed. The results revealed that the adsorbent surface is heterogeneous consisting mainly from calcium carbonate layers (either calcite or aragonite) and a small amount of organic macromolecules (proteins and polysaccharides). The dye adsorptive potential of gastropod shells powder was evaluated as function of initial solution pH (1–5), adsorbent dose (6–40 g L?1), dye concentration (50–300 mg L?1), temperature (5–60°C), and contact time (0–24 h). It was observed that the maximum values of dye percentage removal were obtained at the initial pH of solution 1.2, shells dose of 40 g L?1, dye initial concentration of 50–50 mg L?1 and higher temperatures; the equilibrium time decreases with increasing of dye concentration. It is proved that the waste seashell powder can be used as low cost bioinorganic adsorbent for dyes removal from textile wastewaters.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号