首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29886篇
  免费   467篇
  国内免费   942篇
测绘学   1567篇
大气科学   2390篇
地球物理   6607篇
地质学   13333篇
海洋学   1263篇
天文学   2545篇
综合类   2178篇
自然地理   1412篇
  2022年   52篇
  2021年   114篇
  2020年   116篇
  2019年   91篇
  2018年   4914篇
  2017年   4197篇
  2016年   2887篇
  2015年   507篇
  2014年   358篇
  2013年   400篇
  2012年   1292篇
  2011年   2918篇
  2010年   2228篇
  2009年   2541篇
  2008年   2078篇
  2007年   2476篇
  2006年   228篇
  2005年   346篇
  2004年   530篇
  2003年   546篇
  2002年   346篇
  2001年   148篇
  2000年   151篇
  1999年   80篇
  1998年   113篇
  1997年   84篇
  1996年   49篇
  1995年   79篇
  1994年   85篇
  1993年   52篇
  1992年   48篇
  1991年   48篇
  1990年   63篇
  1989年   44篇
  1988年   41篇
  1987年   36篇
  1986年   46篇
  1985年   48篇
  1984年   40篇
  1983年   48篇
  1982年   52篇
  1981年   63篇
  1980年   63篇
  1979年   40篇
  1978年   51篇
  1977年   42篇
  1976年   34篇
  1975年   41篇
  1973年   43篇
  1971年   41篇
排序方式: 共有10000条查询结果,搜索用时 725 毫秒
201.
Mesoscale features in the eastward extension of the Kuroshio were investigated using assimilation of TOPEX/POSEIDON (T/P) data into a three-layer quasi-geostrophic model. The T/P data exhibited an elongated state of the southern recirculation gyre in 1993–95 and 1997, between whose two periods the gyre had a contracted state in 1995–96. A few stationary eddies were located in the southern gyre during the contracted state. The baroclinic instability, which was indicated by the phase shift from the uppermost-to the lowest-layer anomalies toward the downstream side, was evident near the Kuroshio Extension (KE) path. Since the instability never appeared in the artificial model without bottom topography, the topographic barrier for the eastward flow in the lowest layer was a necessary condition for the instability. The instability synchronized with the transition in the western region of the KE axis from the elongated to the contracted states. This evolution was interpreted as if the baroclinic instability played some part in the KE states and was a trigger for the transition from the elongated to the contracted states.  相似文献   
202.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   
203.
Baraza  J.  Ercilla  G.  Farrán  M.  Casamor  J. L.  Sorribas  J.  Flores  J. A.  Sierro  F.  Wersteeg  W. 《Marine Geophysical Researches》1997,19(2):115-135
Multibeam bathymetric and ultra high-resolution seismic data reveal that the distal course of the Equatorial Atlantic Mid-Ocean Channel (EAMOC) extends further east and south than was previously known, and is controlled by the presence of morphologic highs related to the Fernando de Noronha Fracture Zone. Distal course of the EAMOC is buried by sediments, and does not have bathymetric expression on the seafloor. The channel fill consists of three seismic sequences, suggesting that the recent geological evolution of the channel is composed of successive phases of decreasing sedimentary activity that finally resulted in its complete burial. Tectonic and volcanic activity related to the Fernando de Noronha Fracture Zone and Ridge, together with the effect of strong pulses of the Antarctic bottom water current during the upper Pliocene are suggested to have contributed to the progressive burial and the final abandonment of the EAMOC.  相似文献   
204.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   
205.
A geomorphological and statistical analysis of slope canyons from the northern KwaZulu-Natal continental margin is documented and compared with submarine canyons from the Atlantic margin of the USA. The northern KwaZulu-Natal margin is characterized by increasing upslope relief, concave slope-gradient profiles and features related to upslope growth of the canyon forms. Discounting slope-gradient profile, this morphology is strikingly similar to canyon systems of the New Jersey slope. Several phases of canyon incision indicate that downslope erosion is also an important factor in the evolution of the northern KwaZulu-Natal canyon systems. Despite the strong similarities between the northern KwaZulu-Natal and New Jersey slope-canyon systems, key differences are evident: (1) the concavity of the northern KwaZulu-Natal slope, contrasting with the ∼linear New Jersey slope; (2) the relative isolation of the northern KwaZulu-Natal canyons, rather than the dense clustering of the New Jersey canyons; and (3) the absence of strongly shelf-breaching canyons along the northern KwaZulu-Natal margin. In comparison with the New Jersey margin, we surmise a more youthful stage of canyon evolution, a result of either the canyons themselves being younger or the formative processes being less active. Less complicated patterns of erosion resulting from reduced sediment availability have developed in northern KwaZulu-Natal. The reduction in slope concavity on the New Jersey margin may be the result of grading of the upper slope by intensive headward erosion, a process more subdued—or less evident—on the KwaZulu-Natal margin.  相似文献   
206.
The effects of scattering and resonance on the energy dissipation of an internal tide were investigated using a two-dimensional model which is a reassembled version of the theoretical generation model devised by Rattray et al. (1969) for internal tide. The basic character of the scattering process at the step bottom was first investigated with a wide shelf model. When the internal wave incited from a deep region (Region II) into the shallow shelf region (Region I), a passing wave into the shallow region, a reflected wave into the deep region, and a beam-like wave, i.e. a scattered wave (SW), emanated at the step bottom. The SW, which consists of the superposition of numerous internal modes, propagated upward/downward into both regions. The general properties of the SW were well expressed around the shelf edge, even in the present model with viscosity effect. The amplitude of the SW decreased dramatically when the depth of the velocity maximum of the incident internal wave in Region II corresponded with the depth of the shelf edge. In the narrow shelf model, where the decay distance of the internal wave in Region I is longer than the shelf width, the incident internal wave reflected at the coast to form a standing wave. When the internal wave in Region I is enhanced by the resonance, the energy of the SW in Region II is also intensified. Furthermore, the energy of the modes in Region II predominated when the velocity maximum is identical to that of the dominant mode in Region I. These results suggest that the spatial scale of shelf region is a very important factor governing the energy dissipation of the internal tide through reflection and scattering in a narrow shelf.  相似文献   
207.
During time-series observations in Sagami Bay, Japan, the concentration of dissolved dimethylsulfoniopropionate (DMSPd), a precursor of dimethylsulfide (DMS), was negatively correlated with salinity. In the laboratory, low-salinity shock reduced DMS production rates of the natural bacterial community and induced rapid DMSP release from a dinophyte, Heterocapsa triquetra, suggesting that low-salinity shock reduced DMSPd consumption but enhanced DMSPd production, which agrees with the negative correlation between DMSPd and salinity observed in Sagami bay. In addition, low-salinity shock did not affect DMSP lyase activity of H. triquetra. Low-salinity shock would increase the contribution from algae in DMS production, leading to an increase in potential DMS productivity in the environment.  相似文献   
208.
Algorithm for HF radar vector current measurements   总被引:1,自引:0,他引:1  
A new algorithm is proposed, called the stream function method (SFM) for producing vector current maps from radial data measured by dual-site high frequency surface wave radar (HFSWR). In SFM, a scalar stream function is constructed under some oceanographic assumptions. The function describes the two-dimensional (2-D) ocean surface water motion and is used to obtain the distribution of vector currents. The performance of SFM is evaluated using simulated radial data, which demonstrates that SFM has advantages over typical vectorial combination methods (VCM) both in error acceptance and robustness, and excels another method based on least-squares fitting (LSF) in recovering the complicated current models. Furthermore, SFM is capable of providing the total currents based on radials from single-site radar. We also test the assumptions of horizontal non-divergence in the simulation. The new algorithm is applied to the field experiment data of Wuhan University’s ocean state measuring and analyzing radar (OSMAR), collected in the coastal East China Sea during April 11–17, 2004. Quantitative comparisons are given between radar results by three current algorithms and in-situ current meter measurements. Preliminary analysis of the vertical current shear is given based on the current meter measurements.  相似文献   
209.
The Blake Outer Ridge is a 480–kilometer long linear sedimentary drift ridge striking perpendicular to the North American coastline. By modeling free-air gravity anomalies we tested for the presence of a crustal feature that may control the location and orientation of the Blake Outer Ridge. Most of our crustal density models that match observed gravity anomalies require an increase in oceanic crustal thickness of 1–3 km on the southwest side of the Blake Outer Ridge relative to the northeast side. Most of these models also require 1–4 km of crustal thinning in zone 20–30 km southwest of the crest of the Blake Outer Ridge. Although these features are consistent with the structure of oceanic fracture zones, the Blake Outer Ridge is not parallel to adjacent known fracture zones. Magnetic anomalies suggest that the ocean crust beneath this feature formed during a period of mid-ocean ridge reorganization, and that the Blake Outer Ridge may be built upon the bathymetric expression of an oblique extensional feature associated with ridge propagation. It is likely that the orientation of this trough acted as a catalyst for sediment deposition with the start of the Western Boundary Undercurrent in the mid-Oligocene.  相似文献   
210.
Jellyfish patch formation is investigated by conducting a drifter experiment combined with aerial photography of a sustained patch of the moon jellyfish in Hokezu Bay, Japan. Jellyfish patches are aggregations of individuals that are caused by a combination of swimming (active influence) and advection by currents (passive influence). The drifter experiment involved the injection of 49 drifters around a distinct surface patch of jellyfish within an area of approximately 300 m × 300 m. The drifters’ motion, caused only by the passive influence, was recorded in a series of 38 aerial photographs taken over approximately 1 h. The ambient uniform current field larger than the patch scale was estimated from the movement of the centroid position of drifters, while the distribution of horizontal divergence and relative vorticity around the patch was estimated from the time-derivative in areas of triangles formed by the drifters. The centroid positions of both drifters and patches moved stably toward the bay head at different speeds. The difference vector between the patch and drifter centroids was directed to the sun, and was opposite to the ambient current. The distributions of vorticity and divergence around patches exhibited inhomogeneity within the patch scale, and the drifters in this nonuniform current field aggregated near the convergence area within 1 h. The results suggest that horizontal patch formation is predominantly influenced by passive factors at the surface of Hokezu Bay. Furthermore, the upward swimming against downwelling may make sustained patch in surface layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号