首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   12篇
  国内免费   1篇
测绘学   11篇
大气科学   50篇
地球物理   145篇
地质学   206篇
海洋学   30篇
天文学   110篇
自然地理   50篇
  2021年   9篇
  2020年   7篇
  2019年   11篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   17篇
  2014年   13篇
  2013年   24篇
  2012年   11篇
  2011年   15篇
  2010年   22篇
  2009年   27篇
  2008年   32篇
  2007年   18篇
  2006年   19篇
  2005年   18篇
  2004年   24篇
  2003年   14篇
  2002年   25篇
  2001年   16篇
  2000年   21篇
  1999年   14篇
  1998年   6篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   12篇
  1993年   5篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1985年   4篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   9篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1975年   8篇
  1974年   5篇
  1973年   9篇
  1972年   7篇
  1971年   3篇
  1944年   4篇
排序方式: 共有602条查询结果,搜索用时 15 毫秒
91.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:7,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   
92.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   
93.
We use diagnostic studies of off-line variable infiltration capacity (VIC) model simulations of terrestrial water budgets and 21st-century climate change simulations using the parallel climate model (PCM) to estimate the time required to detect predicted changes in annual precipitation (P), evapotranspiration (E), and discharge (Q) in three sub-basins of the Mississippi River Basin. Time series lengths on the order of 50–350 years are required to detect plausible P, E, and Q trends in the Missouri, Ohio, and Upper Mississippi River basins. Approximately 80–160, 50, and 140–350 years, respectively, are needed to detect the predicted P, E, and Q trends with a high degree of statistical confidence. These detection time estimates are based on conservative statistical criteria (α = 0.05 and β = 0.10) associated with low probability of both detecting a trend when it is not occurring (Type I error) and not detecting a trend when it is occurring (Type II error). The long detection times suggest that global-warming-induced changes in annual basin-wide hydro-climatic variables that may already be occurring in the three basins probably cannot yet be detected at this level of confidence. Furthermore, changes for some variables that may occur within the 21st century might not be detectable for many decades or until the following century – this may or may not be the case for individual recording station data. The long detection times for streamflow result from comparatively low signal-to-noise ratios in the annual time series. Finally, initial estimates suggest that faster detection of acceleration in the hydrological cycle may be possible using seasonal time series of appropriate hydro-climatic variables, rather than annual time series.  相似文献   
94.
The requirements for a credible large-eddy simulation of neutral, turbulent flow over hills with an aerodynamically rough surface are discussed, in order to select a suitable case for simulation. As well as providing adequate resolution within the dynamically important inner region, obtaining a realistic upstream or undisturbed mean velocity profile is also of critical importance. A distributed drag canopy formulation has been introduced to the model to allow it to obtain such a profile while resolving very close to the rough surface. Simulations have then been performed of flow over ridges of varying heights. The results from the steepest case, which is just on the verge of separation, are compared with wind-tunnel observations. It is shown that the large-eddy simulation results are in much better agreement with the experimental data than are the results from a simple first-order mixing-length closure model. An encouraging lack of sensitivity of the simulation results to numerical resolution is also demonstrated.  相似文献   
95.
96.
University faculty partners from the Departments of Geography and Instruction and Teacher Education at a large, public university collaborated with K-12 teachers and the leadership of a rural school district in order to investigate the crosscutting content of science, mathematics, and geography through the integration of web-based GIS technologies. The project explored the critical connections among technology, pedagogy, and content with a particular emphasis on developing technology-enhanced, inquiry-based lessons in which the teachers and their students used GIS technologies to analyze, visualize, and present data in real-world contexts. The findings highlight the importance of well-structured professional development that builds community, integrates diverse content and pedagogical expertise, provides feedback and coaching, and is of sufficient duration to effect change.  相似文献   
97.
(1) The observed anomalies in meteoritic oxygen isotope compositions are not due to an incomplete mixing of several dust or gas-plus-dust components in the solar nebula. If they were, other elements would display similar anomalies. (The FUN inclusions in Allende appear to be exceptions to this premise.) (2) The anomalies must therefore stem from differing degrees of incomplete exchange of oxygen isotopes between the primordial gas and dust components of the nebula. The dust is more likely to have been the16O-enriched component. (3) Since the isotopic difference between dust and gas probably could not have been preserved if the dust was ever completely vaporized in the nebula, the Ca,Al-rich inclusions (CAI's) in carbonaceous chondrites are unlikely to be condensates, but instead are distillation residues. (4) If so, the observed depletion of super-refractory elements in the Group II CAI's cannot have been accomplished by fractional condensation in the solar nebula. (5) Then this depletion, and a number of other properties of the components of primitive meteoritic material, must be relics of pre-solar system fractionations among different populations of interstellar dust grains.  相似文献   
98.
The El Asnam earthquake of October 10, 1980 (Ms=7.3) produced surface faulting on a northeast-trending thrust fault of 30 km length with displacements of up to 6.5 m, though average displacements were about 3 m. In addition, widespread tensional features were formed, some in clear association with folding above the thrust, and others, in an area beyond the exposure of the thrust at the surface, which may be related to buried reverse faults.The observed thrust fault is split into southern, central and northern segments. Local and teleseismic data are examined to show that the main shock nucleated at the southwest end of the fault, and propagated 12 km northeast where a second rupture of approximately equal moment occurred, continuing the faulting a further 12 km northeast along the central segment. Both ruptures nucleated at about 8–10 km depth. Displacements were largest on the central segment, where they were probably enlarged by aftershocks, including one of mb=6.1 three hours after the main shock. The northern segment was much shorter than the other two, and showed smaller displacement.The junctions between fault segments are marked by distinct geomorphological characteristics and a change in strike of the faulting, as well as a sudden drop in the observed displacement. It appears that the rupture development is influenced by the changes in fault geometry between segments, and that such junctions or barriers have persisted through much of the late Quaternary.  相似文献   
99.
100.
A study has been made of the response, during the San Fernando earthquake 9 February 1971, of the nine-storey steel frame Building 180, located at the California Institute of Technology, Jet Propulsion Laboratory, Pasadena. The analysis throws light on the actual dynamical properties of the building during the earthquake, and also demonstrates that it is possible, when the ground motion is specified, to make accurate predictions of building motions during moderate earthquakes by using a linear viscously damped model. Methods of evaluating the lower mode periods and damping ratios from the earthquake records are described and the values obtained are compared with results from dynamic testing before and after the earthquake and with the periods computed from computer models of the building. Although no structural damage occurred and computed stresses in the steel frame were less than yield stresses, the periods measured by an ambient vibration test after the earthquake were of the order of 10 per cent higher than the pre-earthquake values. The maximum periods during the earthquake were found to be about 30 per cent higher than the post-earthquake periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号