首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   0篇
  国内免费   5篇
大气科学   4篇
地球物理   13篇
地质学   63篇
海洋学   4篇
天文学   4篇
综合类   1篇
自然地理   12篇
  2021年   1篇
  2018年   1篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   2篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有101条查询结果,搜索用时 62 毫秒
31.
The leeward fringing reef at Fantome Island (central Great Barrier Reef province) is a carbonate body which has developed under the influence of terrigenous sedimentation. The reef flat is up to 1000 m wide and is surfaced by mobile sand and gravel, with almost all live corals restricted to the seaward rim. The reef slope has coral columns and heads on the upper part, but below 5 m water depth it is a muddy substrate with scattered mounds of branching corals. Three high recovery cores show the reef is up to 10 m thick and developed over a gently sloping terrace of weathered Pleistocene alluvium. Three post-glacial stratigraphic units are recognised: (1) carbonate reef top unit of coral rudstone and framestone including Sinularia spiculite; (2) lower slope unit of coral floatstone in a terrigenous muddy matrix; and (3) transgressive basal unit of skeletal arkosic sand. The acid insoluble content of matrix and of individual corals increases downwards. Coral growth rates decrease downwards, reflecting slower growth in muddier environments. Radiocarbon dating shows that the reef prograded seaward at almost stable sea level. An average vertical accumulation rate of 6.7 mm yr-1 is indicated. Two age reversals are interpreted as material transported by storms or by erosion in response to a late Holocene sea-level fall. The carbonate reef top unit has developed adjacent to, and is environmentally compatible with a muddy terrigenous, lower slope unit. Terrigenous influx has not changed during the Holocene, and terrigenous content of sediments is controlled by deposition on the reef slope of fine sediment winnowed from the reef flat and concentration of coarse sediment in the transgressive basal sheet.  相似文献   
32.
A well preserved strain and reaction gradient records the progressive transformation of a megacrystic Kfs+Cpx+Opx+Bt1±Qtz syenitic pluton to a strongly sheared Kfs+Act+Bt2+Ab+Qtz tectonite within the exhumed Norumbega Fault System, Maine, USA. Detailed microstructural analysis indicates that fracturing and localized fluid infiltration initiated the deconstruction of the existing K-feldspar and two-pyroxene load-bearing framework, and that feedback among metamorphic reactions, fabric development and enhanced permeability during progressive shearing led to the development of an interconnected, biotite- and actinolite-rich foliation. The activation of dislocation creep in biotite and quartz, and dissolution–precipitation creep in actinolite and feldspar, with increasing strain ultimately resulted in a transition from dominantly frictional to dominantly viscous deformation processes. Petrological data show that various scales of geochemical disequilibrium exist across the strain and reaction gradient, and that reaction progress was limited by slow chemical diffusion during the early stages of deformation. Petrological modelling results indicate that the existing plutonic assemblage was metastable at mid-crustal conditions, and that fluid infiltration and deformation allowed the product assemblage to advance towards chemical equilibration. Comparison of the observed microstructures and deformation mechanisms with experimental and numerical modelling results suggest that the development of an interconnected biotite-dominated fabric probably caused a major (up to three fold) reduction in bulk rock strength and localization of strain into the foliated margin.  相似文献   
33.
Abstract— We present spectroscopic observations of 16 asteroids from 1.9‐3.6 μm collected from the United Kingdom Infrared Telescope (UKIRT) from 1996–2000. Of these 16 asteroids, 11 show some evidence of a 3 μm hydrated mineral absorption feature greater than 2s? at 2.9 μm. Using relations first recognized for carbonaceous chondrite powders by Miyamoto and Zolensky (1994) and Sato et al. (1997), we have determined the hydrogen to silicon ratio for these asteroids and calculated their equivalent water contents, assuming all the hydrogen was in water. The asteroids split into 2 groups, roughly defined as equivalent water contents greater than ?7% (8 asteroids, all with 3 μm band depths greater than ?20%) and less than ?3% for the remaining 8 asteroids. This latter group includes some asteroids for which a weak but statistically significant 3 μm band of non‐zero depth exists. The G‐class asteroids in the survey have higher water contents, consistent with CM chondrites. This strengthens the connection between CM chondrites and G asteroids that was proposed by Burbine (1998). We find that the 0.7 μm and 3 μm band depths are correlated for the population of target objects.  相似文献   
34.
ABSTRACT Oppositely concave microfolds (OCMs) in and adjacent to porphyroblasts can be classified into five nongenetic types. Type 1 OCMs are found in sections through porphyroblasts with spiral-shaped inclusion trails cut parallel to the spiral axes, and commonly show closed foliation loops. Type 2 OCMs, commonly referred to as ‘millipede’ microstructure, are highly symmetrical, the foliation folded into OCMs being approximately perpendicular to the overprinting foliation. Type 3 OCMs are similar to Type 2, but are asymmetrical, the foliation folded into OCMs being variably oblique to the overprinting foliation. Type 4 OCMs are highly asymmetrical, only one foliation is present, and this foliation is parallel to the local shear plane. Type 5 OCMs result from porphyroblast growth over a microfold interference pattern. Types 1 and 2 are commonly interpreted as indicating highly noncoaxial and highly coaxial bulk deformation paths, respectively, during porphyroblast growth. However, theoretically they can form by any deformation path intermediate between bulk coaxial shortening and bulk simple shearing. Given particular initial foliation orientation and timing of porphyroblast growth, Type 3 OCMs can also form during these intermediate deformation paths, and are commonly found in the same rocks as Type 2 OCMs. Type 4 OCMs may indicate highly noncoaxial deformation during porphyroblast growth, but may be difficult to distinguish from Type 3 OCMs. Thus, Types 1–3 (and possibly 4) reflect the finite strain state, giving no information about the rotational component of the deformation(s) responsible for their formation. Furthermore, there is a lack of unequivocal independent evidence for the degree of noncoaxiality of deformation (s) during the growth of porphyroblasts containing OCMs. Type 2 OCMs that occur independently of porphyroblasts or other rigid objects might indicate highly coaxial bulk shortening, but there is a lack of supporting physical or computer modelling. It is possible that microstructures in the matrix around OCMs formed during highly noncoaxial and highly coaxial deformation histories might have specific characteristics that allow them to be distinguished from one another. However, determining degrees of noncoaxiality from rock fabrics is a major, longstanding problem in structural geology.  相似文献   
35.
This paper presents new lichenometric population data from the Antarctic Peninsula (67°S), and describes a new approach to lichen growth-rate calibration in locations where dated surfaces are extremely rare. We use historical aerial photography and field surveys to identify sites of former perennial snowpatches where lichen populations now exist. As an independent check on lichen mortality by snowkill, and the timing of snow patch disappearance, we use a positive-degree day (PDD) approach based on monthly climate data from Rothera Research Station. We find that maximum growth rates for lichens <40 mm in diameter on Adelaide Island are around 0.8 mm/yr. Furthermore, we propose that our combined methodology may be more widely applicable to the Polar Regions where the construction of lichenometric dating (age-size) curves remains a problem.  相似文献   
36.
Age determinations for rock samples collected by Fridtjof Nansen during his trans-Arctic expedition from 1893-1896 have yielded additional information on the tectonic chronology of the Arctic Basin. The data suggest pulses of volcanic activity in the Frans Josef Land Archipelago with approximate averages of 120 ma and 135 ma. These ages are consistent with postulated opening dates for the western Arctic and thus suggest that initial volcanism affected the entire Arctic margin.  相似文献   
37.
38.
REPLY     
  相似文献   
39.
Five coarsening upward shallow marine sandstone sequences (2–10 m thick), are described from the late Precambrian of North Norway, where they occur in a laterally continuous and tectonically undeformed outcrop. The sequences consist of five facies with distinct assemblages of sedimentary structures and palaeocurrent patterns. Each facies is the product of alternate phases of sedimentation during relatively high- and low-energy periods. Facies 1 to 4 are interpreted as representing prograding, subtidal sand bars. Sand bar progradation occurred during the highest energy periods when unidirectional currents flowed to the northwest, depositing trough cross-bedded sandstones (facies 3 and 4) on the bar crests and flanks, and sheet sandstone beds (facies 1 and 2) in the offshore environments. Weaker northwesterly flowing currents continued during moderate energy fair weather periods. Low energy fair weather periods were dominated by wave processes, which formed largescale, low-angle, westerly inclined surfaces on the bar flanks (facies 4) and wave rippled sandstone beds (facies 2) and flat laminated siltstone layers (facies 1) in the offshore environments. One sand bar was dissected by channels and infilled by tabular cross-bedded sandstones (facies 5). Bipolar palaeocurrent evidence, with two modes separated into two laterally equivalent channel systems, suggests deposition by tidal currents in mutually evasive ebb and flood channels. The inferred processes of these sand bars are compared with those associated with modern storm-generated and tidal current generated linear sand ridges. Both are influenced by the interaction of relatively low and high energy conditions. The presence of the tidal channel facies, however, combined with the inferred strong bottom current regime, is more analogous to a tidal current hydraulic regime.  相似文献   
40.
Johnson, M. D. & Ståhl, Y. 2009: Stratigraphy, sedimentology, age and palaeoenvironment of marine varved clay in the Middle Swedish end‐moraine zone. Boreas, 10.1111/j.1502‐3885.2009.00124.x. ISSN 0300‐9483 Deglaciation of the Middle Swedish end‐moraine zone and age of the sediment in and between the moraines have been discussed for about a hundred years. The goal of this project was to determine the stratigraphy and age of the sediment in and between the moraines. Inter‐moraine flats are underlain by clay, 10–25 m thick, overlying thin sand and gravel or till on bedrock. The clay is overlain by a few metres of sand and gravel. Much of the clay beneath the flats consists of rhythmites that grade from grey to red and are 2–74 cm thick. Our interpretation of these rhythmites as being varves is supported by grain size and mineralogical and elemental variations. Foraminifera and ostracods show that the clay was deposited in an arctic marine environment, while radiocarbon dating of the microfossils indicates that the clay was deposited 12 150 cal. 14C years ago, during the Younger Dryas chronozone (YD). Most of the optical stimulated luminescence dates on the clay are much older, containing quartz sand that was insufficiently bleached. The stratigraphy indicates that the moraines are composed of YD clay pushed into ridge forms during ice‐front oscillations. It is not possible to determine how far north the Scandinavian Ice Sheet retreated prior to the YD advance. We neither support nor reject the suggestion that the ice margin retreated to the northern edge of Mt. Billingen during the Allerød, causing the Baltic Ice Lake to drain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号